MARK SCHEME for the June 2004 question papers

5070 CHEMISTRY

5070/01
5070/02
5070/03
5070/04
Paper 1 (Multiple Choice), maximum raw mark 40
Paper 2 (Theory 1), maximum raw mark 75
Paper 3 (Practical 1), maximum raw mark 40
Paper 4 (Theory 2 (A2 Core)), maximum raw mark 60

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

- CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

GCE O LEVEL

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 5070/01
CHEMISTRY
Paper 1 (Multiple Choice)

Page 1	Mark Scheme	Syllabus	Paper
	CHEMISTRY - JUNE 2004	5070	1

Question Number	Key	Question Number	Key
1	B	21	A
2	B	22	B
3	B	23	D
4	B	24	D
5	D	25	C
6	B	26	B
7	D	27	D
8	B	28	B
9	A	29	D
10	C	30	B
11	B	31	A
12	D	32	A
13	C	33	B
14	B	34	C
15	C	35	C
16	D	36	C
17	D	37	D
18	B	38	C
19	A	39	C
20	C	40	A

GCE O LEVEL

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 5070/02 CHEMISTRY
 Paper 2 (Theory 1)

KEY

a semi colon ;	indicates a separation of marking points
an oblique line /	indicates alternative wording or acceptable alternative
R	means reject
A	means accept
AW means 'alternative wording'	
underlined with a straight line	accept this word only, no alternative word is acceptable
D	represents quality mark(s) awarded for diagrams, as indicated on the Mark Scheme
L	represents mark(s) awarded for labels on diagrams, as indicated on the Mark Scheme
Q	represents quality of expression and is used for marks awarded on free-response questions

Page 1	Mark Scheme	Syllabus	Paper
	CHEMISTRY - JUNE 2004	5070	2

Section A Maximum 45 marks

A. 1 four names at $\{1\}$ each penalise correct formulae once only
(a) methane
(b) potassium nitrate
(c) potassium nitrate or lead(II) nitrate allow just lead nitrate
(d) phosphorus oxide or sulphur dioxide

Page 2	Mark Scheme	Syllabus	Paper
	CHEMISTRY - JUNE 2004	5070	2

A. 2

(a) first line $\mathrm{K} 39 \mathrm{p}=19, \mathrm{e}=19, \mathrm{n}=20$
second line K $40 \quad p=19, e=19, n=21$
\{1\}
(b) any two from:
floats melts silvery ball runs around lilac flame
(c)
(i) $0.195 / 39=0.005 \mathrm{~mol} \mathrm{~K}$ hence
$\mathrm{mol} \mathrm{OH}^{-}=0.005$
(ii) $\mathrm{mol} \mathrm{H}^{+}=0.010$
(iii) ionic equation

$$
\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}
$$

ignore any state symbols
(iv) pH is 1 to 4
because an excess of HCl present
or an extra 0.005 mol acid present
\{4\} on Q. paper, but
(d) potassium ion has 2.8.8 and +1 charge $\{1\}$
oxide ion has 2.8 and - 2 charge
\{1\}
\qquad

Page 3	Mark Scheme	Syllabus	Paper
	CHEMISTRY - JUNE 2004	5070	2

A. 3

(a) marks only for the reasons for the choice of poly(propene)
if any other polymer chosen, $\{0\}$ for the section
useable temp. is above $100^{\circ} \mathrm{C} \quad\{1\}$ insoluble in oil \{1\}
(b) polythene used for cling film plastic bags etc. \{1\}
(c) any two problems from
non-biodegradable litter filling landfill sites burning gives toxic gases
(d) structure of poly(propene)
correct repeat unit
\{1\}
shows continuation
\{1\}
(e)
(i) ester linkage
\{1\}
(ii) fats lipids
\{1\}
\{2\}
(f) nylon structure
\{1\}
allow protein or nylon 6

Page 4	Mark Scheme	Syllabus	Paper
	CHEMISTRY - JUNE 2004	5070	2

A. 4

(a)
(i) equation
\{1\}
$\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}$
(ii) more collisions per unit volume or more crowded molecules
(ii) faster molecules
\{1\}
hence more frequent collisions
\{1\}
\{4\}
(b) incomplete combustion
\{1\}
(c)
(i) equation
$\{1\}$
$2 \mathrm{NO}+2 \mathrm{CO} \quad 2 \mathrm{CO}_{2}+\mathrm{N}_{2}$
ignore state symbols
(ii) powder has a large surface area
hence faster reaction
\{1\}
\{3\}
\qquad

Page 5	Mark Scheme	Syllabus	Paper
	CHEMISTRY - JUNE 2004	5070	2

A. 5

(a)
(i) copper is below hydrogen in the activity series or Cu^{2+} gains electrons or Cu^{2+} is reduced more easily than $\mathrm{H}^{+} \quad\{1\}$
(ii) oxidation is electron loss or oxidation state of oxygen increases
(iii) equation
$\mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}^{-}$
(b)
(i) in solid ions cannot move
in melt ions can move
(ii)
cathode
$\mathrm{Pb}^{2+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{~Pb}$
anode
$2 \mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}$
allow \{1\} if equations reversed

Page 6	Mark Scheme	Syllabus	Paper
	CHEMISTRY - JUNE 2004	5070	2

A. 6
(a) covalent
(b)
(i) both are giant structures or macromolecules many strong bonds to break
(ii) graphite has fewer strong bonds to break \{1\}
(c) graphite conducts, diamond does not
\{1\}
delocalised electrons in graphite
\{1\}
\{2\}
\qquad
total [6]

Section A. score any 45 from 46

Page 7	Mark Scheme	Syllabus	Paper
	CHEMISTRY - JUNE 2004	5070	2

Section B

B. 7

(a) bond formation is exothermic $\quad\{1\}$ bond breaking is endothermic more energy released than absorbed
(b) diagram shows:
labelled reactant above labelled product.
activation energy correctly labelled
\{1\}
enthalpy change correctly labelled
\{1\}
(c) note that units are not required
in (ii) \& (iii) some working required to score both
(i) finish at 35 ± 1
(ii) mols of O_{2} is $60 / 24000$
$=0.00250$
(iii) mols of $\mathrm{H}_{2} \mathrm{O}_{2}=2 \times 0.0025=0.0050$
conc. of $\mathrm{H}_{2} \mathrm{O}_{2}=20 \times 0.0050=0.10$
\{5\}

Page 8	Mark Scheme	Syllabus	Paper
	CHEMISTRY - JUNE 2004	5070	2

B. 8

(a)
(i) equation
$2 \mathrm{NiS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{NiO}+2 \mathrm{SO}_{2}$
(ii) $\quad(59+32) \mathrm{kg} \mathrm{NiS}$ forms $(32+32) \mathrm{kg} \mathrm{SO}_{2}$

182 kg NiS forms $182 \times 64 / 91=128 \mathrm{~kg} \mathrm{SO}_{2}\{1\}$
(b) it is covalent
\{1\}
because low b.p.
\{1\}
shows small forces present
\{1\}
(c) compound and problem both needed
e.g.
SO_{2} causes acid rain or an effect of acid rain CO_{2} causes greenhouse effect or an effect of warming CO is toxic
(d) used in hydrogenation of alkenes
(e) $\mathrm{Ni}+\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$ no reaction
$\mathrm{Ni}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ soln changes blue to green and/or pink solid
an equation
\{1\}

$$
\begin{aligned}
& \mathrm{Zn}+\mathrm{Ni}^{2+} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Ni} \\
& \mathrm{Zn}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Cu} \\
& \mathrm{Ni}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Ni}^{2+}+\mathrm{Cu}
\end{aligned}
$$

Page 9	Mark Scheme	Syllabus	Paper
	CHEMISTRY - JUNE 2004	5070	2

B. 9

(a) equation
$\mathrm{C}_{12} \mathrm{H}_{26} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{10} \mathrm{H}_{22}$ et.al.
(b) ethene diagram
\{1\}
(c) mols $C=0.72 / 12=0.06$ all three
mols $\mathrm{H}=0.18 / 1=0.18$ needed
mols $O=0.96 / 16=0.06 \quad$ for $\{1\}$
formula is $\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{O}_{6}$
hence empirical is $\mathrm{CH}_{3} \mathrm{O}$
\{1\}
\{3\}
(d) react with steam
using phosphoric acid
and one of 300° to $600^{\circ} \mathrm{C} ; 60$ to 80 atmos. $\{1\}$
just heat, pressure, catalyst scores $\{1\}$ only
(e)
(i) colour changes from orange to blue/green
structure of ethanoic acid
allow full structure
or condensed versions e.g. $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} ; \mathrm{CH}_{3} \mathrm{COOH}$
(ii) product structure
$\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}$ or $(\mathrm{CHO})_{2}$
or $\mathrm{HOCH}_{2} . \mathrm{CO}_{2} \mathrm{H}$
score any [10] from [11]

Page 10	Mark Scheme	Syllabus	Paper
	CHEMISTRY - JUNE 2004	5070	2

B. 10

(a) no mark for $\mathrm{Fe}_{3} \mathrm{O}_{4}$ alone

$\%$ Fe's are	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	$122 / 160=70.0$	$\{1\}$
	$\mathrm{Fe}_{3} \mathrm{O}_{4}$	$168 / 232=74.4$	$\{1\}$
	FeCO_{3}	$56 / 126=48.2$	$\{1\}$

(b) four equations plus four statements at \{1\} each allow statements using oxidation states
$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
C oxidised and O_{2} reduced
$\mathrm{C}+\mathrm{CO}_{2} \rightarrow 2 \mathrm{CO}$
C oxidised and CO_{2} reduced
$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
$\mathrm{Fe}_{2} \mathrm{O}_{3}$ reduced and CO oxidised
$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}$
$\mathrm{Fe}_{2} \mathrm{O}_{3}$ reduced and C oxidised
(c) metals have +ve ions in sea of electrons
\{1\}
ions can slide around
(d) low carbon gives softer/more malleable steel $\{1\}$
carbon disrupts the packing
\{1\}

GCE O LEVEL

MARK SCHEME
MAXIMUM MARK: 40
SYLLABUS/COMPONENT: 5070/03
CHEMISTRY
Paper 3 (Practical 1)

Page 1	Mark Scheme	Syllabus	Paper
	CHEMISTRY - JUNE 2004	5070	3

1 Maximum 20 marks

(a) 3 marks for each reading within $1^{\circ} \mathrm{C}$ of the Supervisor's value.

1 mark for each reading within $2^{\circ} \mathrm{C}$ of the Supervisor's value.

Any subtraction error (-1), but give the 'accuracy' mark on the corrected value.
(b) 1 mark for plotting all the points correctly, tolerance one small square.

Give one mark for two straight lines that intersect, provided that the first two points are used for one of the lines and the second two points for the second line.

Give 1 mark for each straight line which has been extrapolated so that it passes through the 'origin'.

Curves score zero
(c) Highest temperature from the graph. This must be from the point of intersection of the two straight lines.
(d) Corresponding values for the volume of P and Q (both correct).

Candidates who fail to score in (c) can score in (d), provided the values correspond to the temperature given in (c).
(e) Concentration of sodium hydroxide in Q.

Method (1) answer (1)
Candidates who give the incorrect volumes in (d) can score consequentially.

There are no marks for the correct evaluation of an incorrect expression, answers are required correct to two significant figures.

Candidates with the correct answer but no working score (1).

Page 2	Mark Scheme	Syllabus	Paper
	CHEMISTRY - JUNE 2004	5070	2

Solution S (copper sulphate + ammonia)
 Test 1 Blue ppt
 Ppt turns brown or black
 Gas turns litmus blue
 Ammonia produced

allow solid, suspension, powder but not substance, particles, deposit, residue, sediment, gelatinous, insoluble for precipitate

Test 2 blue ppt [ppt (1) colour (1)]
soluble in excess acid
blue solution
allow colourless or pale green or blue
Test 3 White ppt [ppt (1) colour (1)]
Insoluble in acid
Dark blue solution becomes paler or colourless
Blue ppt turns to a white ppt scores (2)
Test 4 Pale blue ppt allow any colour of ppt or even turns cloudy etc
Soluble in excess
Colourless or pale blue solution
Test 5 No reaction
White ppt
Brown or yellow solution
Give one mark each for ppt and brown/yellow and an additional mark for linking white to the ppt and brown/yellow to the solution

Solution becomes colourless or white ppt
Conclusion
The ions are $\mathrm{SO}_{4}{ }^{2-}$
requires a ppt in Test 3 which does not dissolve when acid is added
$\mathrm{NH}_{4}{ }^{+}$
requires ammonia named or tested for in Test 1
Cu^{2+} Any two ions to score, (-1 for names)

All points to score up to a paper mark of 40 .

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 5070/04 CHEMISTRY
Paper 4 (Theory 2 (A2 Core))

Page 1	Mark Scheme	Syllabus	Paper
	CHEMISTRY - JUNE 2004	5070	4

1 (a) Pippette (1)
(b) Saftey bulb (1)
(c) To prevent liquid entering the mouth (1)

2 (a) It is flammable or very reactive with oxygen or water in the air (1)
(b) Hydrogen (1) pops in a flame (1)
(c) Sodium moves around the surface, inflames, dissolves, reacts violently.
[Any two (2)]
(d) Sodium hydroxide (1)
(e) Blue (1)
(f) $2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{NaOH}+\quad \mathrm{H}_{2} \quad$ [balanced (1)] (or balanced reaction based on half quantities)

3 (a) Syringe (1)
(b) Turns lime water milky (1)
(c) (i) 0.005 (ii) 0.01 (1) (iii) No (1)
reaction shows that one mole of calcium carbonate requires two moles of hydrochloric acid (1).
(d) $0.005 \times 24=0.12 \mathrm{dm}^{3}(1)$
(e) $0.12 \mathrm{dm}^{3}$ (1) Magnesium carbonate (0.0059 moles) will be in excess thus volume of CO_{2} will be based on HCl as before (1).
4 to 8
(b), (a), (c), (b),
(d) 1 mark each

9 (a) 6.96 g (1)
(b) colourless or green to pink or purple (1)
$\begin{array}{llll}\text { (c) } & 25.9 & 48.6 & 32.4\end{array}$

$\underline{0.0}$	$\underline{23.3}$	$\underline{6.9}$
$\underline{25.5}$		

Mean value $=25.4 \mathrm{~cm}^{3}(1)$
(d) 0.000508 (1)
(e) 0.00254 (1)
(f) 0.0254 (1)
(g) 3.86 g (1)
(h) $3.10 \mathrm{~g}(1)$
(i) 0.172 g (1)

1 mark for each correct row or column (3)

```
101 coloured solution (1)
2 blue precipitate (1) insoluble in excess (1)
3 blue precipitate (1) soluble in excess (1) forming a DEEP blue solution (1)
4 dilute nitric acid (1) aqueous silver nitrate (1) white precipitate (1)
```

```
Formula CuCl2(1)
```

Page 2	Mark Scheme	Syllabus	Paper
	CHEMISTRY - JUNE 2004	5070	4

11 (a) (i) 0.46 g (1) (ii) 36.3 and 25.8 (1) rise in $\mathrm{T}=10.5$ (1) (b) (i)

(ii) 74 (1)
(iii) 0.0062 moles (1)
(iv) $1693 \mathrm{~kJ} / \mathrm{mol}(1)$
(c) points correctly plotted (1), smooth curve (1).
(d) (i) 0.062 g (1) (please read candidate's graph)
(ii)

(e) To eliminate error due to heat losses, to standardize the experiment or act as a control etc (1)

