

00

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER		CANDIDATE NUMBER
CO-ORDINATE	ED SCIENCES	0654/21
Paper 2 (Core)		October/November 2011
		2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

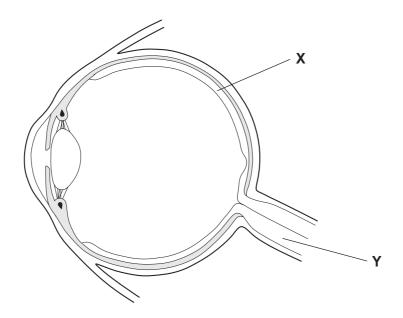
You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

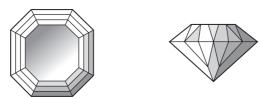
A copy of the Periodic Table is printed on page 24.


At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 23 printed pages and 1 blank page.

UNIVERSITY of CAMBRIDGE International Examinations **1** (a) Fig. 1.1 shows a section through a human eye.



(i) Name parts X and Y.
X ______Y _____ [2]
(ii) On Fig. 1.1, draw one ray of light entering the eye and reaching an area where light-sensitive cells are found. [2]
(iii) On Fig. 1.1, use a label line and the letter F to label one part of the eye that helps to focus light onto the light-sensitive part of the eye. [1]
(iv) Describe how information is sent from the light-sensitive cells to the brain. [2]

For Examiner's Use

(b)	Alm DN	nost all cells in the body have a nucleus, which contains chromosomes made of A.	For Examiner's Use
	(i)	Name one type of cell in the human body that does not contain a nucleus.	
		[1]	
	(ii)	In humans, a sperm cell has 23 chromosomes.	
		Suggest the number of chromosomes that are present in one of the light-sensitive cells in the human eye.	
		[1]	
	(iii)	Outline the function of DNA.	
		[2]	

2 Diamonds, sapphires and rubies are found in the Earth's crust and are valuable as industrial materials and for making jewellery.

(a) Table 2.1 shows the numbers of protons, neutrons and electrons in three atoms, X, Y and Z.

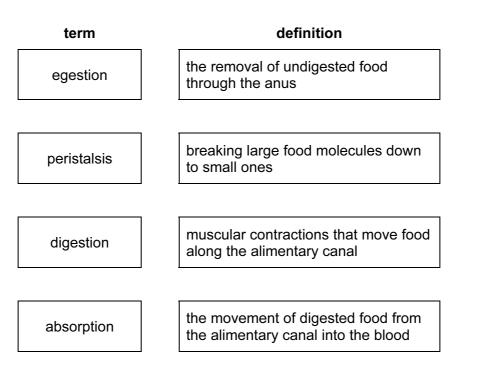
Table	2.	1
-------	----	---

atom	number of protons	number of neutrons	number of electrons
x	5	6	5
Y	6	7	6
Z	12	12	12

(i) Diamonds are made of the element carbon.

Explain which one of the atoms, **X**, **Y** or **Z**, shown in Table 2.1 is a carbon atom.

[2]


For Examiner's Use

(ii) State one way in which an ion differs from an atom. For Examiner's Use[1] (c) Fig. 2.1 shows a simplified diagram of a process which is used to obtain metallic aluminium. power supply (+)molten mixture containing aluminium oxide Fig. 2.1 (i) Name the process shown in Fig. 2.1, and state the meaning of the word *anode*. name of process meaning of anode [2] (ii) Explain why the mixture containing aluminium oxide in Fig. 2.1 must be kept molten. [2] (iii) Complete the simple word chemical equation below which describes the main reaction taking place in the process in Fig. 2.1. aluminium oxide —----[1]

3 Fig. 3.1 shows a speed-time graph for the performance of an athlete in a race. For Examiner's Use 10 speed 5 m/s 10 15 20 25 5 time/s Fig. 3.1 (a) Use the graph to describe the motion of the athlete between (i) B and C, (ii) C and D. [2] (b) Use the graph to calculate the acceleration of the athlete between A and B. Show your working.m/s² [2] (c) The athlete runs a distance of 160 m in 25 s. Calculate the average speed of the athlete. State the formula that you use and show your working. formula used working m/s [2]

(d)	The power output of the athlete is 600 W.	For Examiner's
	Calculate the amount of work done by the athlete over 5 seconds.	Use
	Show your working.	
	J [2]	
(e)	After the race the athlete is sweating. The sweat evaporates from the surface of the athlete's skin.	
	Describe the process of evaporation in terms of particles.	
	[2]	

4 (a) Draw lines to link each term to its correct definition.

[3]

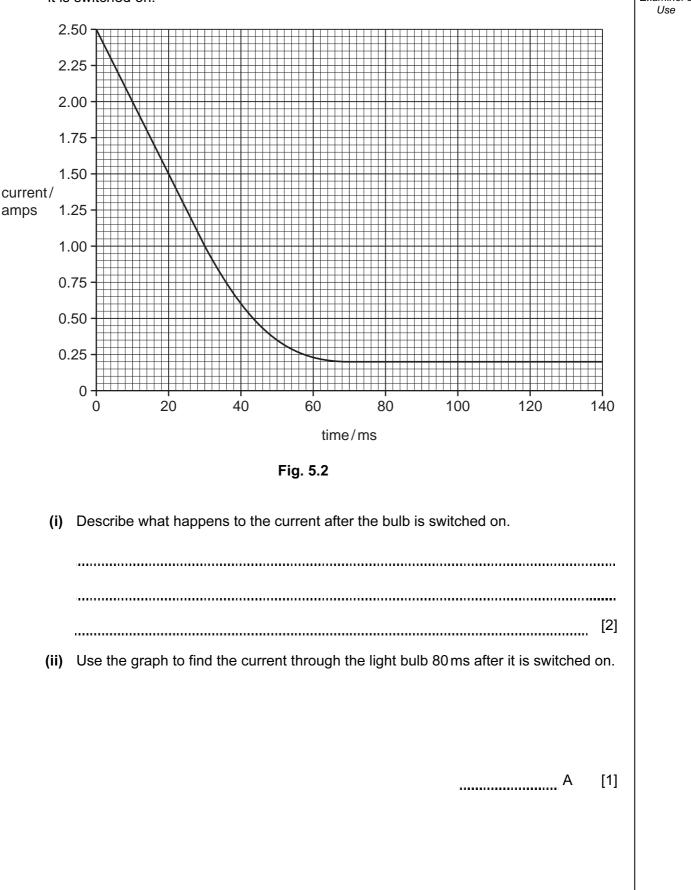
For Examiner's Use

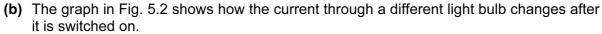
(b) Table 4.1 shows some information about enzymes found in the human alimentary canal.

Complete the table.

Table 4.1

enzyme	substrate	product
amylase		maltose
	proteins	amino acids
		fatty acids and glycerol


[4]


(c) Nutrients such as amino acids and glucose are carried from the alimentary canal to the For liver. The liver converts any excess amino acids to a nitrogenous waste product. Examiner's Use (i) Name this waste product. [1] (ii) Name the organs that excrete this waste product.[1] (iii) The liver converts excess glucose in the blood into glycogen. The glycogen is then stored in cells in the liver. Glycogen is an insoluble substance. Using your knowledge of osmosis, suggest why liver cells might swell and burst if they stored large quantities of a soluble substance such as glucose. [2] (iv) When body cells need glucose, liver cells convert some of their stored glycogen back into glucose. The cells then release the glucose into the blood. Explain why body cells need glucose. [2]

(a) Fig. 5.1 shows a 230 V 60 W light bulb. Examiner's Use , 230V 60W tungsten filament unreactive gas filling bulb glass bulb Fig. 5.1 (i) Explain the meaning of 60 W on the bulb, 230 V on the bulb. [2] (ii) Describe the energy transformations which occur in the light bulb when it has been switched on. [3] (iii) Suggest why the light bulb is filled with an unreactive gas. [1]

5

For

For Examiner's Use

(c) (i) A lamp with a resistance of 1000Ω , when lit, is connected in series with another lamp with a resistance of 2000Ω , when lit. Examiner's

Calculate the combined resistance of these two lamps.

State the formula that you use and show your working.

formula

working

Ω [2]

(ii) The resistance of a piece of wire depends on a number of variables such as the length of the wire and the material from which it is made.

State two other factors which can affect the resistance of a piece of wire.

1	
2	

[2]

For

Use

BLANK PAGE

13

Please turn over for Question 6.

6 (a) Table 6.1 shows some properties of three solid elements **A**, **B** and **C**.

Table	6.1
Table	0.1

element	density	electrical conductivity	melting point
Α	low	high	low
В	low	low	high
С	high	high	high

(i) Suggest and explain which element, **A**, **B** or **C**, has properties that are typical of a non-metal.

	element
	explanation
	[1]
(ii)	Suggest and explain which element, A , B or C , has properties that are typical of a transition metal.
	element
	explanation
	[1]

- (b) Components in electrical circuits are often joined by soldering them together. Examiner's Solder is an alloy which has a lower melting point than any of the pure metals it contains. Fig. 6.1 shows part of an electrical circuit into which a resistor has been soldered. resistor plastic circuit board metal connecting strip solder Fig. 6.1 (i) One type of solder is an alloy that contains tin, silver and copper. Describe briefly what must be done to make this solder.[1] (ii) Explain why electrical components are joined by soldering rather than by the use of a non-metallic adhesive (glue). [1] (c) Fig. 6.2 shows part of an electrical cell which a student is making in a school laboratory. voltmeter volts
 - metal electrode e.g. zinc laboratory bench Fig. 6.2

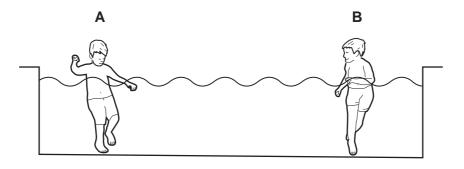
Complete and label the diagram in Fig. 6.2 to show how the cell should appear when the student has finished. [3]

[Turn over www.theallpapers.com

0654/21/O/N/11

For

Use


(d) Catalytic converters are used in modern cars to reduce air pollution. Examiner's Fig. 6.3 shows a simplified diagram of a catalytic converter in a car. air and gasoline (hydrocarbon fuel) exhaust gases released into the air catalytic convertor Fig. 6.3 (i) Name two gaseous compounds that are produced when a hydrocarbon undergoes complete combustion. 1 2 _____ [2] (ii) Suggest one other gas in the exhaust gas mixture whose concentration is reduced by the catalytic converter. [1]

16

For

Use

7 (a) Fig. 7.1 shows two children playing in a swimming pool.

Child A makes some small waves on the surface of the water.

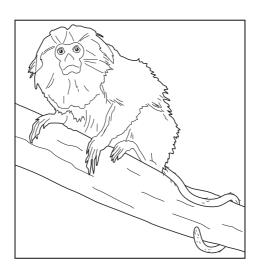
(i) In 10 seconds, 5 complete waves pass by child **B** who is standing in the same pool.

Calculate the frequency of the waves.

Show your working.

Hz [1]
Use suitable words to complete the sentences below to describe what waves do.
A wave transfers energy without transferring ______.
The energy is transferred in the direction that the wave ______. [2]
Water waves are transverse waves. Name one example of a longitudinal wave. For Examiner's Use

- 10 m Fig. 7.2 A boy has a mass of 50 kg. (i) The gravitational field strength of the Earth is 10 N/kg. State the weight of the boy. N [1] (ii) The boy climbs a vertical distance of 10 m from the pool to the top of the slide. Calculate the work done in gaining this height. State the formula that you use and show your working. formula used working _____ J [2]
- (b) The top of a water slide is 10 m above the water in the pool. This is shown in Fig. 7.2.


For Examiner's Use (iii) The boy slides down to the pool. His speed at the bottom of the slide is 12 m/s. Calculate his kinetic energy at the bottom of the slide. State the formula that you use and show your working. formula used working
(c) The water in the swimming pool is heated by the Sun. State the method of heat transfer by which heat from the Sun reaches the Earth.

[1]

The golden lion tamarin, Leontopithecus rosalia, is a monkey that lives in forests in Brazil. Its diet includes fruits and nectar from trees. Its predators include snakes, bamboo rats and

20

For Examiner's Use

(a) (i) State the correct biological term for a two-word Latin name such as *Leontopithecus* rosalia.

......[1]

(ii) Suggest an advantage of giving each species of organism a Latin name like this.

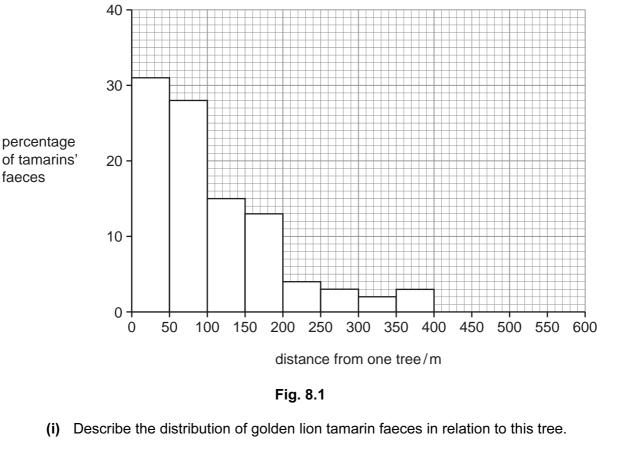
..... [1]

(b) (i) In the space below, use the information provided to construct a food web that includes golden lion tamarins.

[3]

[1]

(ii) On your food web, draw a circle around **one** producer.

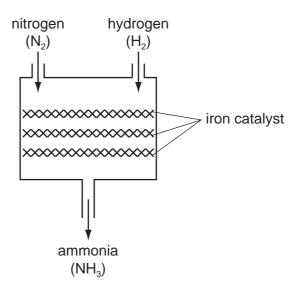

8

owls.

(c) Golden lion tamarins are important for the dispersal of seeds from many different species of tree. They eat the fruits and then egest the seeds in their faeces.

An investigation was carried out into the distances that golden lion tamarins dispersed seeds from trees.

Fig. 8.1 shows the results of a study in which the distances of the tamarins' faeces from one tree were measured.


(ii) Suggest two ways in which the dispersal of seeds away from the tree, in golden lion tamarin faeces, could benefit the young plants that grow from the seeds.

1
2
[2]
[2]
[2]

For

Examiner's Use **9** The manufacture of ammonia is an important industrial process.

Fig. 9.1 is a simplified diagram of a reaction vessel which is used to make ammonia.

- (a) Ammonia is made by combining nitrogen and hydrogen.
 - (i) Explain **one** difference between an *element* and a *compound*. You may use these substances as examples.

(ii) Describe a chemical test for ammonia gas.
[2]

(b) Ammonia is used to make the compound ammonium nitrate. When it is added to soil, ammonium nitrate is a useful source of nitrogen for plants. Some of the nitrogen taken in by plants is combined with other elements to make amino acids. (i) Explain briefly why nitrogen gas from the air cannot be used directly by most plants. [1] (ii) Suggest a compound that neutralises ammonia to produce ammonium nitrate. [1] (iii) Name the three other elements which are always combined with nitrogen in amino acids. [2] (iv) Describe briefly what happens to amino acid molecules when they form protein molecules. [2] (c) The reaction between nitrogen and hydrogen requires an iron catalyst. (i) State what is meant by the term *catalyst*. (ii) State one reason why the catalyst in the reaction in Fig. 9.1 could not be made of the alkali metal sodium. [1]

For

Examiner's Use

	0	⁴ Helium	20 Neon 10 Ad Ar 18	84 Krypton 36	131 Xenon 54	Radon 86	175 Lutetium 71 Lawrencium 103								
	١١		19 9 Fluorine 35.5 Chorine 17	80 Br Bromine 35	127 I fodine 53	At Astatine 85	173 Yb Yo To Nobelium 102								
	N		16 Oxygen 8 32 32 Sultur 16	79 Selenium 34	128 Te Tellurium 52	Polonium 84	169 Thulium 69 Mendelevium 101								
	>		14 Nitrogen 31 Phosphorus 15	75 AS Arsenic 33	122 Sb 51 209	Bismuth 83	167 Erbium 68 Farmium Fermium								
	2		6 Carbon 6 28 28 28 14	73 Ge Germanium 32	119 Sn 50 Tin 207	Pb Lead 82	165 Holmium 67 Einsteinium 99								
	≡		11 B Boron 5 27 A1 Auminium 13	70 Ga Gallium 31	115 Ind 100 104	T1 Thallium 81	162 Dy Dysprosium 66 Cf Californium								
				65 Zn 30 ^{Zinc}	112 Cadmium 48 201	Mercury 80	159 Tb 65 Berkelium 97								
				64 Cu Copper 29	108 Ag 8iver 197	Au Gold	157 Gdd Gadolinium 64 Curium 96								
Group				59 Nickel 28	106 Pd Palladium 46	Platinum 78	152 Eu 63 Americium 95								
	GC Hydogen	Ö										59 CO ^{Cobalt}	103 Rh odium 45 192	Ir Indium 77	150 Samarium 62 Putonium 94
			56 Fe Iron 26	101 Ruthenium 44	OSmium 76	Promethium 61 Neptunium 93									
			55 Mn ^{Manganese} 25	Technetium 43	Rtenium 75	144 Neodymium 60 Uranium 92									
				52 Cr Chromium 24	96 Molybdenum 42 184	Tungsten 74	141 Praseodymium 59 Protactinium 91								
				51 Vanadium 23	93 Niobium 181	Tantalum 73	140 Cerium 58 232 Thorium 90								
				48 Tritanium 22	91 Zr Zirconium 40	Hafnium 72	nic mass bol number								
				45 Sc 21	89 Yttrium 39 139	Lanthanum 57 * 227 Ac 89	*58-71 Lanthanoid series 190-103 Actinoid series 190-103 Actinoid series a = relative atomic mass Key b X = atomic symbol b = proton (atomic) number								
					F		b=a b=a								
	=	-	9 Beryllium 4 24 Magnesium 12	40 Calcium 20	88 Strontium 38 137	56 Barium 56 Barium 226 Radium	*58-71 Lanthanoid serie 190-103 Actinoid series a = relativ Key b = proton								

24

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

www.theallpapers.com