

078011

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME		
 CENTRE NUMBER	CANDIDATE NUMBER	
CO-ORDINATE	ED SCIENCES	0654/21
Paper 2 (Core)	C	October/November 2010
		2 hours
Candidates ans	swer on the Question Paper.	
No Additional M	Naterials are required.	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

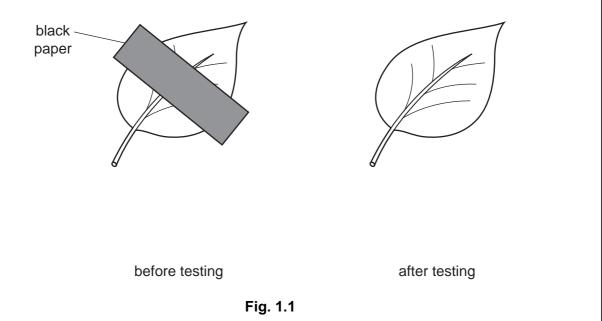
DO NOT WRITE IN ANY BARCODES.

Answer **all** questions. A copy of the Periodic Table is printed on page 28.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	

This document consists of 24 printed pages and 4 blank pages.



UNIVERSITY of CAMBRIDGE International Examinations

[Turn over

2

(ii) Fig. 1.1 shows the leaf before and after he did the starch test.

Complete the diagram of the leaf after testing in Fig. 1.1. Do **not** colour the diagram.

Use labels to show which parts would look orange-brown and which parts would look blue-black. [2]

2 Fig. 2.1 shows the apparatus a student used to study the rate of reaction between some powdered metal and dilute hydrochloric acid.

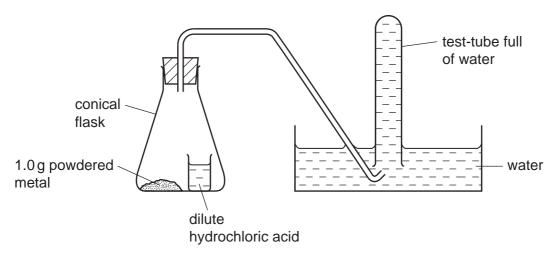


Fig. 2.1

When the student tilted the conical flask, the acid mixed with the powdered metal. If a reaction occurred, any gas which was produced collected in the test-tube, pushing the water out. The student measured the time taken for the test-tube to fill with gas.

The student used the apparatus and method described above to compare the rates of reaction between dilute hydrochloric acid and three powdered metals, **X**, **Y** and **Z**.

The results the student obtained are shown in Table 2.1.

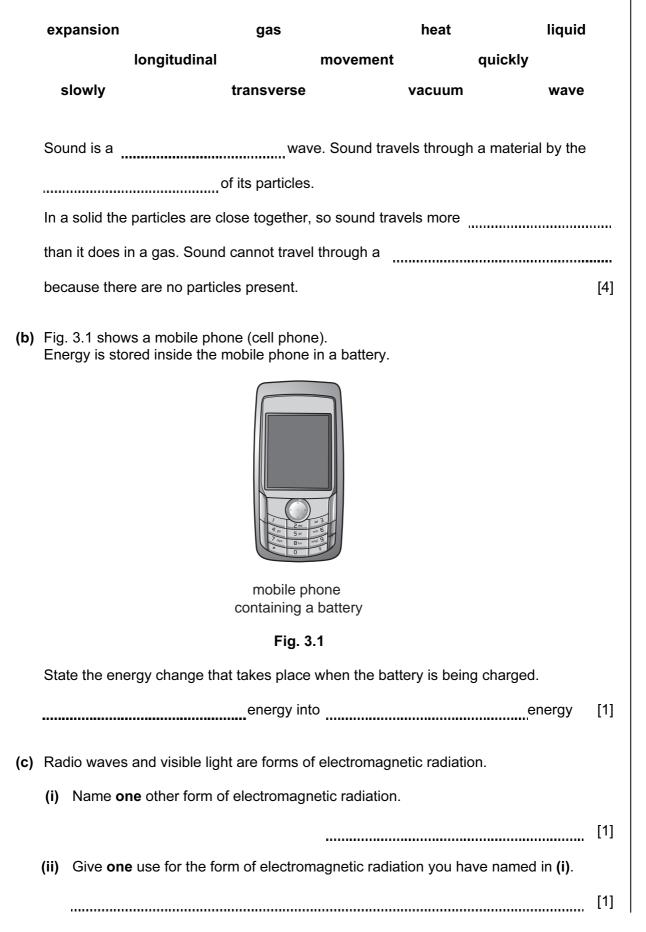
metal	mass of metal/g	time for gas to fill the test-tube/seconds
x	1.0	150
Y	1.0	45
Z	1.0	no gas was produced

(a) (i) Name the gas produced when metals X and Y reacted with dilute hydrochloric acid.

......[1]

(ii) Describe the test you would carry out to identify this gas.

[1]


(i	iii)	Suggest and explain which metal, X, Y or Z, could have been copper.
		metal
		explanation
		[1]
(i	iv)	The student repeated the experiment with metal ${\bf X}$ but this time she used a single piece of metal weighing 1.0 g.
		State and explain how the rate of reaction would differ from the experiment in which 1.0g of powdered metal was used.
		[2]
• •		nother experiment, the student added powdered zinc to dilute sulfuric acid. When the bling stopped, there was still some powdered zinc left at the bottom of the solution.
	(i)	Explain why the bubbling eventually stopped even though some zinc powder remained.
		[1]
	(ii)	Name the salt which was left in the solution at the end of the reaction.
		[1]

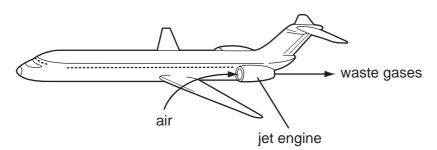
- (c) In areas where pollution is very low, rain falls through air which contains the gases nitrogen, oxygen and carbon dioxide. Chemical weathering may occur when rainwater flows over rocks.
 - (i) Explain why rainwater which falls through unpolluted air has a pH which is slightly less than 7.

(ii) Describe one advantage to plants of the chemical weathering of rocks.

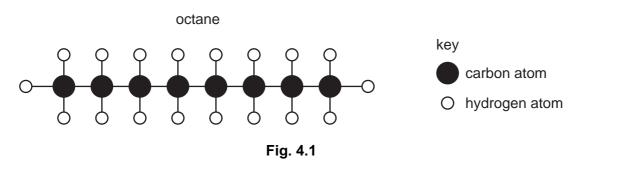
[2]

For Examiner's Use

(a) Complete the sentences by choosing words from the list. Each word may be used


once, more than once or not at all.

3


0654/21/O/N/10

4 In jet engines, hydrocarbon molecules from the jet fuel mix with air and burn. This releases a large amount of energy and produces a mixture of waste gases. These waste gases pass out through the back of the jet engine into the atmosphere.

For Examiner's Use

(a) Fig. 4.1 shows a molecule of octane, which is a typical hydrocarbon molecule in jet fuel.

- (i) State the chemical formula of octane. [1]
- (ii) Complete the word equation below for the complete combustion of octane.

(b) (i) A carbon atom has a proton (atomic) number 6 and a nucleon (mass) number 12.

State the number of neutrons and electrons in this carbon atom.

number of neutrons	
number of electrons	[2]

- (ii) State the chemical symbol of another element which is in the same **group** in the Periodic Table as carbon.
 - [1]

For Examiner's Use

(c) Table 4.1 shows information about some metallic materials.

	Table 4.1	
material	strength	density
mild steel	very high	very high
aluminium	low	low
duralumin (an aluminium alloy)	very high	low

(i) Describe briefly how aluminium and an alloy of aluminium differ in composition.

.....[1]

(ii) Duralumin is used in the manufacture of aircraft.

Explain why the properties of this material make it suitable for this purpose.

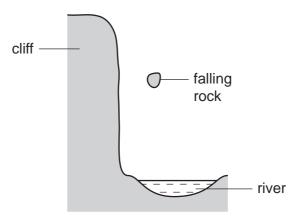
[2]

For Examiner's Use

	biceps	brain	detectors	effectors
	nerve	S	recept	ors
cal	ecialised cells in the h		overt the stimulus int	
Th	e central nervous syste	m then sends imp	ulses to parts of the bo	ody that respond to the
stir	nulus, such as muscles	or glands. These	parts are called	[3]
(b) Wh	nen we smell food, the	salivary glands re	espond by secreting s	aliva.
(i)	Saliva contains the e	nzyme amylase.	Describe the function	of amylase.
(ii)	Explain why it is nece	essary for most ty	pes of food that we e	at to be digested.
				[2]
(iii)	Describe how food swallowed it.	is moved thro	ugh the alimentary	canal, after we have
				[2]

www.theallpapers.com

© UCLES 2010


5

(a) Complete the sentences about the human nervous system, using some of the words in the list.

11

Please turn over for Question 6.

6 Fig. 6.1 shows a rock of mass 2 kg that is falling from the top of a cliff into the river below.

(a) Fig. 6.2 is the speed-time graph for the motion of the rock.

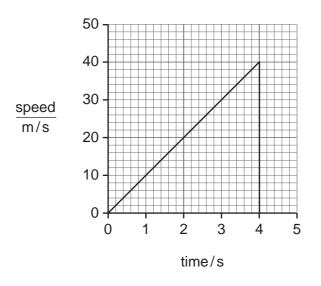


Fig. 6.2

- (i) State the maximum speed of the rock. [1]
- (ii) Use your answer to (i) to calculate the kinetic energy of the rock as it hits the water.

State the formula that you use and show your working.

formula used

working

.....

[2]

J

(b) An observer on the top of the cliff measured the time between when he saw the rock hit For the water and when he heard the sound of the splash. This time was 0.25 s. Examiner's Use The speed of sound in air is 330 m/s. Calculate the height of the cliff. State the formula that you use and show your working. formula used working [2] _____m (c) The rock has a mass of 2000 g and a volume of 700 cm^3 . Calculate the density of the rock. State the formula that you use and show your working. State the units of your answer. formula used working [3] -----(d) The rock contains radioactive substances emitting high levels of ionising radiation. (i) State how the radioactivity could be detected. [1] (ii) Explain why it would be dangerous for a person to handle this rock without proper protection. [1]

7 The gray wolf, *Canis lupus*, is a predator that lives in North America. Fig. 7.1 shows a gray wolf.

For Examiner's Use

Fig. 7.1

(a) State one feature, visible on Fig. 7.1, which shows that the gray wolf is a mammal.

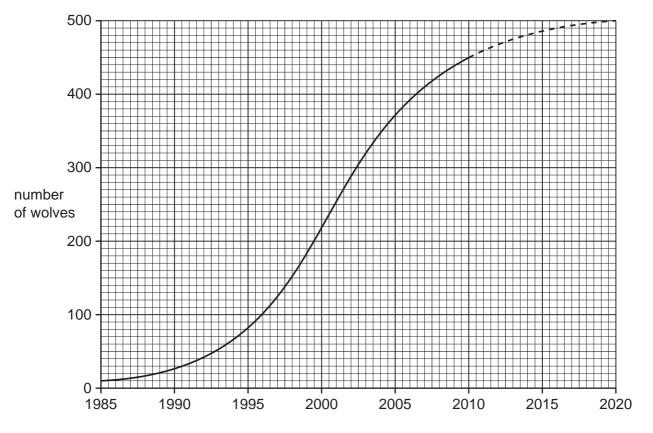
[1]

(b) The binomial for the gray wolf is *Canis lupus*. Another dog-like animal that lives in North America is the coyote, *Canis latrans*.

What do these binomials tell us about the relationship between gray wolf and the coyote?

[2]

(c) In Wisconsin, Canada, the wolves' diet consists mainly of white-tailed deer, beavers, and snowshoe hares. Examiner's These all eat plants. (i) Construct a food web including all the organisms mentioned above. [3] (ii) State what the arrows in your food web represent.[1] (iii) With reference to your answers to (i) and (ii), suggest why wolves are rarer than white-tailed deer. [2]


For

Use

(d) People used to shoot gray wolves. In 1978, a conservation programme for gray wolves began in Wisconsin and people were no longer allowed to shoot them.

The main causes of death of wolves are disease, starvation and accidents such as collisions with vehicles.

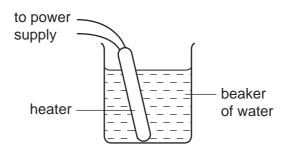
Fig. 7.2 shows the size of the gray wolf population in Wisconsin between 1986 and 2010. It also shows the predicted wolf population if the conservation programme is successful.

year

Fig. 7.2

16

For


Examiner's Use

(i) Suggest why the population of gray wolves in Wisconsin is not expected to increase beyond about 500 individuals, even if they are no longer killed by Examiner's humans. [2] (ii) Some people in Wisconsin are opposed to the wolf conservation programme. Explain why it is important to conserve species such as the gray wolf.

[2] For

Use

8 Fig. 8.1 shows an electric heater being used to heat up 0.5 kg of water in a beaker.

- (a) What is the main process by which energy is transferred through the water?
 - ------
- (b) The specific heat capacity of the water is $4200 \text{ J/kg}^{\circ}\text{C}$.
 - (i) Explain what is meant by the term specific heat capacity.
 - [1]
 - (ii) The electrical energy supplied to the heater in 10 minutes was 70000 J.

Calculate the power supplied to the heater.

State the formula that you use and show your working.

formula used

working

W [2]

For Examiner's Use

[1]

(c) The electrical energy for the heater has been generated by burning a fossil fuel in a power station.
 (i) Name one suitable fossil fuel. [1]
 (ii) Describe one problem with the burning of fossil fuels to generate electricity. [1]
 (iii) State one alternative energy resource to fossil fuels, which could have been used to generate the electricity. [1]

For

Examiner's Use

(a)	Copper metal reacts with oxygen gas to form copper oxide.	For
	State why this reaction is an example of oxidation.	Examiner's Use
	[1]	

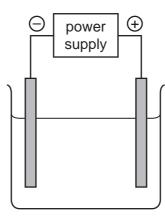
20

(b) Table 9.1 shows information about two different types of copper oxide.

Table	9.1
-------	-----

name	colour	chemical formula
copper(II) oxide	black	CuO
copper(I) oxide	red	Cu ₂ O

(i) Describe briefly the difference in chemical composition of these two types of copper oxide.



(ii) Copper is a transition metal.

State **one** property, shown in Table 9.1, which is typical of transition metals.

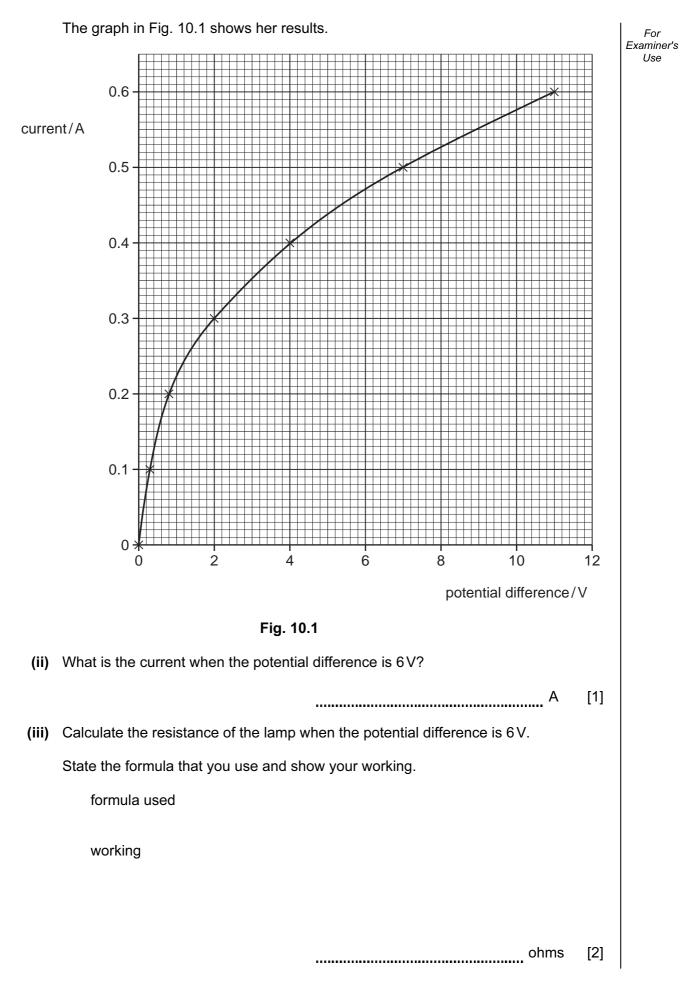
9

(c) Fig. 9.1 shows apparatus used in the electrolysis of copper chloride solution.

(i) On the diagram, clearly label the anode and the electrolyte. [2]
(ii) Copper chloride solution is a mixture of copper ions and chloride ions in water. State briefly one difference between a chlorine *atom* and a chloride *ion*. [1]
(iii) When the electrolysis reaction in Fig. 9.1 is occurring, bubbles of gas appear at the surface of the anode. Describe a safe test and its result to confirm that this gas is chlorine. [2]
(iv) Name the substance which forms at the cathode. [2]

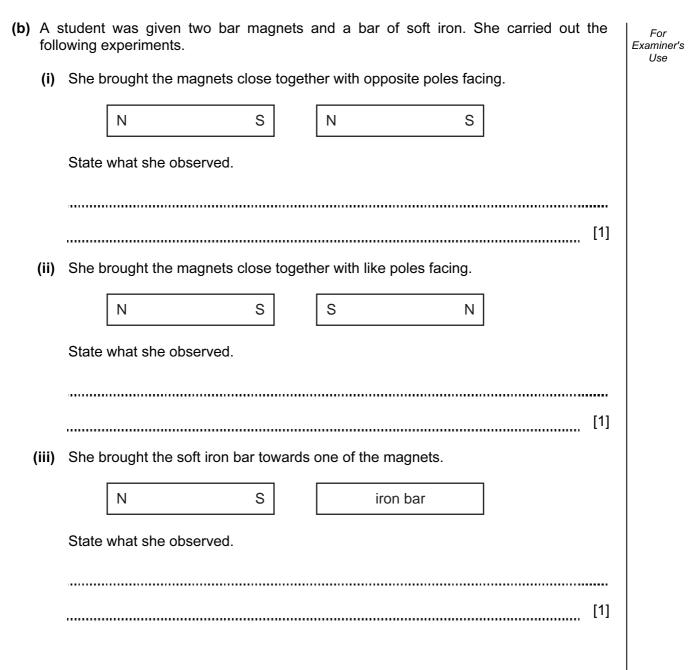
[1]

10 (a) A student investigated the relationship between the potential difference across a lamp and the current passing through it.


For Examiner's Use

She used the following apparatus:

ammeter connecting wires lamp power supply voltmeter


(i) Draw a suitable circuit diagram for this investigation.

[4]

[Turn over www.theallpapers.com

0654/21/O/N/10

	0	4	Helium		20 Ne	Neon 10	40	Ar	Argon 18	84	Кr	Krypton 36	131	Xe	Xenon 54		Rn	Radon 86			ľ	175			۲	Lav 103
	, >			4	<u></u>	Fluorine 9	35.5	CI	Chlorine 17	80	Ŗ	Bromine 35	127	Ι	lodine 53		At	Astatine 85				173	Y D	2	No	Nobelium 102
	5				₽ 0	Oxygen 8	32	S	Sulfur 16	5	Se	Selenium 34	128	Te	Tellurium 52		Ро	Polonium 84				169	B Inlin	RO	Md	Mendelevium 101
	>				[†] Z	Nitrogen 7	31	₽	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	209	Bi	Bismuth 83				167 1	Erbium Erbium	20	Fm	Fermium 100
	2			4	N I	Carbon 6	28	Si	Silicon 14	73	Ge	Germanium 32	119	Sn	50 Tin	207	РЬ	Lead 82				165	Holmium F	10	Es	Einsteinium 99
	≡				= ഥ	Boron 5	27	٩l	Aluminium 13	70	Ga	Gallium 31	115	In	Indium 49	204	Τl	Thallium 81				162	Dysprosium	00	ັບ	Californium 98
										65	Zn	Zinc 30	112	Cd	Cadmium 48	201	Hg	Mercury 80				159	Terbium Cr	8	BK	Berkelium 97
Group										64	Cu	Copper 29	108	Ag	Silver 47	197	Au	Gold 79				157	Gadolinium Gadolinium	04	CB	Curium 96
										59	Ż	Nickel 28	106	Pd	Palladium 46	195	Ŧ	Platinum 78				152	Europium C	20	Am	Americium 95
				_						59	ပိ	Cobalt 27	103	Rh	Rhodium 45	192	Ir	Iridium 77				150	Samarium	70	Pu	_
		-	Hydrogen							56	Fe	Iron 26	101	Ru	Ruthenium 44	190	0s	Osmium 76				ſ	Promethium	0	aN	Neptunium
										55	Mn	Manganese 25		۲	Technetium 43	186	Re	Rhenium 75				144	Neodymium) D	Uranium 92
										52	ັບ	Chromium 24	96	Mo	Molybdenum 42	184	≥	Tungsten 74				141	Praseodymium	P.C.	Ра	Protactinium 91
										51	>	Vanadium 23	93	qN	Niobium 41	181	Ta	Tantalum 73				140	Cerium Cerium	20	Th L	Thorium 90
										48	F	Titanium 22	91	Z	Zirconium 40	178	Ħf	Hafnium 72						nic mass	lodi	nic) number
							1				Sc	Scandium 21	68	≻	Yttrium 39	139	La	Lanthanum 57 *	227	Actinium	89 1	l series	series	a = relative atomic mass	X = atomic symbol	b = proton (atomic) number
	=				» a	Beryllium 4	24	Mg	Magnesium 12	40	Ca	Calcium 20	88	S	Strontium 38	137	Ba	Barium 56	226	Ra	88	*58-71 Lanthanoid series	†90-103 Actinoid series	a a		p
				-											Rubidium 7			Caesium 5				Ľ		1		

28

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

www.theallpapers.com