

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CO-ORDINATED SCIENCES

0654/02

Paper 2 (Core)

October/November 2007

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
Total	

This document consists of 21 printed pages and 3 blank pages.

1 (a) Complete the following sentences choosing from the words below.

		amps	coulon	nbs curre	nt parallel		
		potential differen	ce	resistance	series		
	Ele	ctric charge is measur	ed in				
	A fl	ow of electric charge is	s called a				
	Αv	oltmeter is used to me	asure				
	Αv	oltmeter is connected	in		with the cor	nponent.	[4]
(b)		tudent measures the oblied across it.	current pa	issing through a v	wire when a potential	difference	e is
	(i)	Calculate the resistar and the current meas			ential difference of 0.3	3 V is appl	ied
		State the formula that	t you use	and show your wo	orking.		
		formula used					
		working					
						Ω	[2]
	(ii)	Calculate the quantity	of charge	e which flows thro	ugh the wire in one m	inute.	
		State the formula that	t you use	and show your wo	orking.		
		formula used					
		working					
						C	[2]

2 Fig. 2.1 shows a small gas burner which can be used to heat water or food contained in a metal cooking pot. The fuel used in this burner is the hydrocarbon butane, C_4H_{10} .

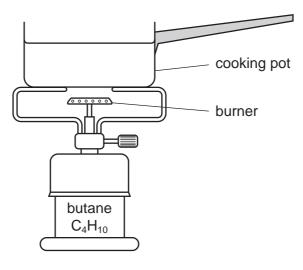


Fig. 2.1

(a)	(i)	Butane is obtained from crude oil (petroleum). Name the process which is used separate butane from the other hydrocarbons in crude oil.	to
			[1]
	(ii)	State one important use, other than as fuels, of hydrocarbons obtained from cru oil.	de
			[1]
	(iii)	Butane is normally a gas at room temperature. In the type of burner shown Fig. 2.1, butane has been condensed into a liquid.	in
		Suggest what must be done to gaseous butane to turn it into a liquid.	
			[1]
(b)	Naı	me the two compounds which are formed when butane is completely burnt.	
			[2]

3 Dairy cattle are kept to produce milk. The milk is produced and stored in the cow's udder.

For Examiner's Use

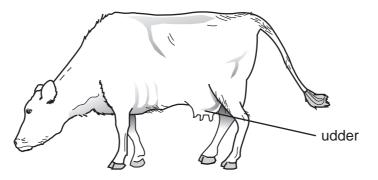


Fig. 3.1

	5	
(a)	State two features of a dairy cow that are visible in Fig. 3.1 and show it is a mamma	l.
	1	
	2.	[2]
(b)	Milk contains a lot of protein, fat and calcium.	
	Outline the function of each of these substances in the human diet.	
	(i) protein	
		[1]
	(ii) fat	
		[1]
	(iii) calcium	
		[1]

(c)	are	ne cows have horns, while others do not. The gene that determines whether there horns or not has two alleles. Allele A does not produce horns. Allele a does duce horns. Heterozygous cows do not have horns.							
	(i)	What is the phenotype of a heterozygous cow?							
		[1]							
	(ii)	A heterozygous bull was bred with a heterozygous cow.							
		Complete the genetic diagram to show the chances of her calf having horns.							
		parents bull with no h	orns cow with no horns						
		Aa							
		gametes and	and						
		offspring	male gametes						
		female gametes	aa has horns						
		chance of the calf having horns is	[4]						

[Turn over www.theallpapers.com © UCLES 2007 0654/02/O/N/07

(a)	pat	ine-123 and iodine-131 are radioactive isotopes of iodine that are used to treat ients in medicine. Iodine-123 emits gamma radiation and has a half-life of 13.6 irs. Iodine-131 emits both beta and gamma radiation and has a half-life of 8 days.
	(i)	What is the meaning of the term half-life?
		[1]
	(ii)	State and explain two reasons why it would be safer for a patient to use iodine-123 rather than iodine-131.
		1.
		2.
		[3]
(b)	The	ere are people working near the radioactive source.
	(i)	How might these workers be harmed by radiation from this radioactive source?
		[1]
	(ii)	Give one way in which these workers could be protected from the radiation emitted.
		[1]

BLANK PAGE

Please turn over for question 5

(b) Tab		vs the numb	ers of protons,	neutrons and e	lectrons in four atoms	s, P, Q,
			Tabl	e 5.1	_	
		atom	protons	neutrons	electrons	
		Р	17	18	18	
		Q	11	12	10	
		R	17	18	17	
		S	16	16	16	
(ii)	Explain wh	nich atom, P	, Q , R or S , is		with nuclean (mass)	
	of 35.				with nucleon (mass)) numl
	of 35.				i with nucleon (mass)) numb
	of 35.				i with nucleon (mass)) numb
(iii)		nt is in Group	o 3 of the Period		with nucleon (mass)) numb
(iii)	An elemer	_	o 3 of the Period	dic Table.	elow shows an aton	
(iii)	An element State and element.	explain wh	o 3 of the Period	dic Table. e diagrams be	elow shows an aton	
(iii)	An element State and element.	_	o 3 of the Period	dic Table.		
(iii)	An element State and element.	explain wh	o 3 of the Period	dic Table. e diagrams be	elow shows an aton	
(iii)	An element State and element.	explain wh	o 3 of the Period	dic Table. e diagrams be	elow shows an aton	

(c) The diagram in Fig. 5.1 shows how ions are arranged in the compound sodium chloride.

For Examiner's Use

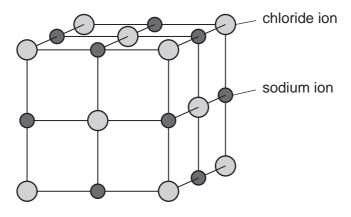


Fig. 5.1

(i)	What name is given to the type of structure in sodium chloride?	
		[1]
(ii)	Describe briefly how chlorine gas could be made from sodium chloride crystals.	
		[2]

6 Fig. 6.1 shows the structure of an insect-pollinated flower.

For Examiner's Use

Fig. 6.1

(a) Outline the functions of the parts of the flower labelled A, B and	I C .
--	--------------

Α	
В	
_	
С	[3]

(b) The flower shown in Fig. 6.1 is pollinated with pollen that came from another flower on the same plant.

Is this an example of asexual reproduction or sexual reproduction?

Explain your answer.

type of reprod	duction	 	 	 	
explanation		 	 	 	
					F41

(c) After pollination, structure **D** is fertilised.

What will structure ${\bf D}$ develop into after it has been fertilised?

______[1]

(d)	The ovary of a flower	develops	into a fruit	after	fertilisation.	Fruits	help to	o dispe	erse	the
	seeds inside them.									

Draw a fruit that is dispersed by animals.

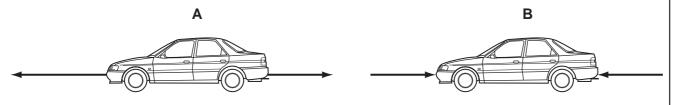
Label the fruit to explain how it is adapted for animal dispersal.

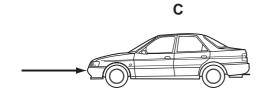
[3]

(e) A student carried out an experiment to find out what conditions some lettuce seeds needed in order to germinate.

Table 6.1 shows his results.

© UCLES 2007


Table 6.1


set of seeds air present		soil present	water present	light present	did seeds germinate?
A yes		yes	yes	yes	yes
B no C yes		yes	yes	yes	no
		no	yes	yes	yes
D	D yes		no	yes	no
E yes		yes	yes	no	no

(i)	Which conditions did the lettuce seeds need for germination?	
		[2]
ii)	State one factor that the student should have kept constant in his experiment.	
		[1]

7 The arrows in Fig. 7.1 show the horizontal forces acting on a car moving forwards. In each case the length of the arrow indicates the size of the force.

For Examiner's Use

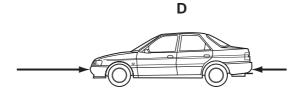


Fig. 7.1

- (a) Which diagram or diagrams show a car which is
 - (i) slowing down, [1]

 (ii) accelerating, [1]

 (iii) travelling at constant speed? [1]
- **(b) (i)** A car of mass 1000 kg travels 320 m in 20 s.

Show that the speed of the car is 16 m/s.

State the formula that you use and show your working.

formula used

working

[1]

	(ii)	Calculate the kinetic energy of the car.						
		State the formula that you use and show your working.						
		formula used						
		working						
		J [2]						
(c)	A c	ar headlamp has a power rating of 60 W.						
	(i)	Calculate the current passing through the headlamp when the voltage across it is 12 V.						
		State the formula that you use and show your working.						
		formula used						
		working						
		,A [2]						
	(ii)	State how many joules of energy will be converted every second in the headlamp.						
		J [1]						

8 A student added four substances, **A**, **B**, **C** and **D**, to four separate beakers each with 25 cm³ of dilute sulphuric acid as shown in Fig. 8.1.

For Examiner's Use

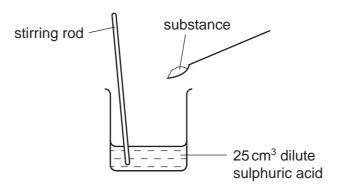


Fig. 8.1

The observations which the student made are shown in Table 8.1.

Table 8.1

substance	observations	pH of the mixture after any reaction is complete
A	gas given off which turns limewater milkycolourless solution formed	2
В	gas given off which turns limewater milkyblue solution formed	3
С	 gas given off which burns with a squeaky pop when ignited colourless solution formed 	3
D	no gas given offblue solution formed	4

(a)	(i)	State and neutralised.	in	which	experiment	the	greatest	amount	of	acid	was
			 			••••••					
			 								. [2]

	(ii)	Explain which one of the substances, A , B , C or D , could have been magnesium carbonate.
		[2]
	(iii)	Explain which one of the substances, A , B , C or D , could have been copper(II) oxide.
		[2]
(b)	Sul	phuric acid occurs in acid rain which forms when rain falls through polluted air.
	Exp rain	plain how the burning of a fossil fuel, such as coal, can lead to the formation of acid
		[2]
(c)	Dilu	ite sulphuric acid is a solution of hydrogen ions and sulphate ions in water.
	Des	scribe a chemical test which would show that sulphuric acid contains sulphate ions.
		[2]

9 Fig. 9.1 shows three cells in a leaf.

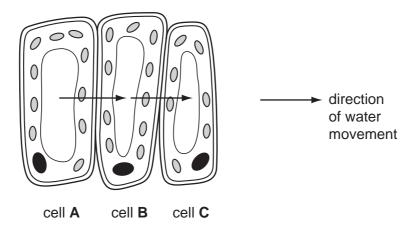


Fig. 9.1

(a)	Nar	me the tissue in which these cells are found.	
			[1]
(b)		scribe one feature, shown in Fig. 9.1, which indicates that these cells are adapt photosynthesis.	ted
			[2]
(c)	The	e arrows in Fig. 9.1 show the direction in which water is moving between these cel	ls.
	(i)	Name the process by which the water is moving.	
			[1]
	(ii)	Which cell, A , B or C , must have the highest concentration of solutes in its cap?	cell
		Explain your answer.	
			 [2]

(d) Complete the sentences to explain how water is absorbed by a plant and transported to its leaves. Use some of the words listed below. guard cells leaf epidermis phloem respiration leaves root hairs stem transpiration xylem Water enters a plant through its _____. The water moves through the cells towards the centre of the root. It enters the ______vessels, which are empty tubes leading up through the root and stem and into the leaves. The water is pulled up because _____ is happening in the leaves. [3] **(e)** Outline two ways in which the tissues in a leaf are supported. 1. _____ 2. (f) The leaf cells shown in Fig. 9.1 contain starch, which has been made by photosynthesis. An animal eats the leaf. (i) Name the enzyme in the animal's digestive system that digests starch. [1]

(ii) Name the substance that is produced when starch is digested.

For Examiner's Use

[1]

10	Sor	ne children are swimming in a swimming pool.	
	(a)	When they are under the water, they can still hear sounds from the surface.	
		Suggest how sound travels through water.	
			[2]
	(b)	The children make some small waves on the surface of the water.	
		Are these waves longitudinal or transverse?	
		Explain your answer using a labelled diagram.	
			[2]
	(c)	When the children leave the pool, the water on their bodies evaporates.	
		Explain how this evaporation takes place in terms of particles.	
			[2]

(d) There is a lamp at the bottom of the pool. Fig. 10.1 shows a ray of light from the lamp travelling up to the surface.

For Examiner's Use

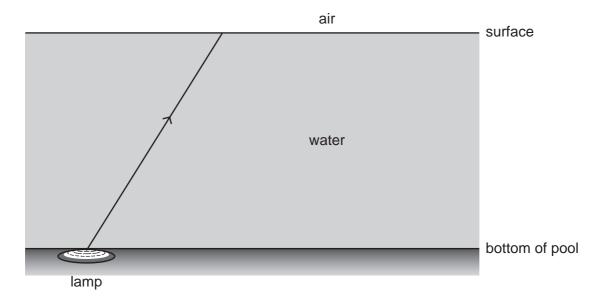


Fig. 10.1

- (i) The ray of light passes through the surface of the water and up into the air.
 - On the diagram, draw the path of the ray as it leaves the water and goes through the air. [2]
- (ii) State the name of the process in (i).

[1]

11	(a)	a) Cellulose is a compound found in plants. Plants obtain the carbon atoms they need to make cellulose from carbon dioxide while is taken in through their leaves.				
		Name the other elements which are present in cellulose.				
		[2]				
	(b)	Amino acids are compounds found in all living organisms. The chemical formula of a typical amino acid is $C_2H_5O_2N$.				
		(i) Explain why the nitrogen atoms needed by the plant to make amino acids cannot be obtained directly from the nitrogen molecules in the air.				
		[41]				
		[1]				
		(ii) Describe briefly how protein molecules are formed from amino acid molecules.				
		[1]				
	(c)	Many of the nutrients that plants need for growth are obtained from the soil. Some of these nutrients are salts released when rocks are broken down by weathering followed by erosion.				
		Describe one way in which rocks are weathered by physical processes.				
		[2]				

ha	ird.	ws over certain types of rock, compou	nds enter the water making
(i)	Name a me	tallic element whose ions cause hardnes	ss in water.
			[
(ii)	measures h	carries out experiments into removir pardness by finding the volume of soap s nes of water in order to form a permanen	olution which must be added t
	His experim	nents and results are shown in Table 11.	1.
_		Table 11.1	
	experiment	details of experiment	soap volume needed for permanent lather /cm³
	1	control (no water treatment)	12.0
	2	0.5 g of sodium carbonate dissolved in the water	4.0
	3	5.0 g of sodium chloride dissolved in the water	12.0
	4	1.0 g of sodium carbonate dissolved in the water	0.5
	Explain whi	ich of the student's experiments was th	e most successful in removin
			[

BLANK PAGE

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	4 He Helium	Ne on 10 Ar	84 X	Krypton 36	131 Xe Xenon 54	Rn Radon 86		Lu Lutetium 71	Lr Lawrencium 103
	= /		19 Fluorine 9 35.5 C.1	17 80 Br	Bromine 35	127 I lodine 53	At Astatine 85		Yb Ytterbium 70	Nobelium
	>		Oxygen 32 Oxygen 6		Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium 69	Md Mendelevium 101
	>		Nitrogen 7 31 31	15 75 AS	Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	Fm Fermium 100
	≥		Carbon 6 Carbon 8 28 Silicon Silicon	73 Ge	Germanium 32	30 Tin 50	207 Pb Lead 82		165 Ho Holmium 67	ES Einsteinium 99
	=		11 Boron 5 27 At Alternation	13 6 a	Gallium 31	115 In Indium 49	204 T 1 Thallium 81		162 Dy Dysprosium 66	Cf Californium 98
				es Zn	Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	BK Berkelium 97
				64 Cu	Copper 29	108 Ag Silver 47	197 Au Gold 79		Gadolinium 64	Cm Curium 96
Group				% \(\bar{\bar{\bar{\bar{\bar{\bar{\bar{	Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95
Ō				ී රි	Cobalt 27	Rh Rhodium	192 Ir Iridium		Sm Samarium 62	Pu Plutonium 94
		Hydrogen		56 Fe	26	Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Np Neptunium 93
				. 55 Mn	Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60	238 U Uranium
				ర జ	Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91
				55	Vanadium 23	Nb Niobium 41	Tantalum		140 Ce Cerium	232 Th Thorium
				48	Titanium 22	91 Zr Zirconium 40	178 Ha fnium * 72	_		mic mass nbol mic) number
				S C 45	Scandium 21	89 Yttrium 39	139 La Lanthanum 57	Ac Actinium . 89	d series series	a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		Beryllium 4 24 Magnesium	72 Ca Ca	20	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series	« × ∞
	_		Lithium 3 23 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	£ 88 X	Potassium 19	Rb Rubidium 37	133 Cs Caesium 55	Fr Francium 87	*58-71 L †90-103	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.