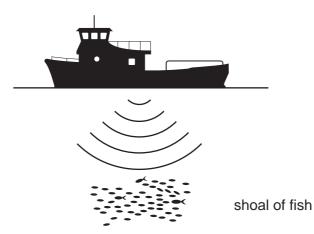

	Candidate Number	Name
		GE INTERNATIONAL EXAMINATIONS Pertificate of Secondary Education
CO-ORDINA	TED SCIENCES	0654/03
Paper 3		October/November 2005
		2 hours
	wer on the Question Pa aterials are required.	
Answer all questions. The number of marks is A copy of the Periodic T		the end of each question or part question. 20.
		For Examiner's U
		For Examiner's U
		1
		1 2
		1 2 3
If you have been given	a label, look at the	1 2 3 4
If you have been given details. If any details missing, please fill in yo	s are incorrect or	1 2 3 4 5

This document consists of **20** printed pages.


[Turn over

Total

1 (a) Red is said to be a *primary colour*, while yellow is said to be a *secondary colour*. Explain what is meant by this statement and name one other primary colour and one other secondary colour.

	exp	lanation				
	prir	nary colour				
	sec	ondary colour				[3]
(b)	Bel	ow is a list of some wave	S.			
		gamma	infra-red	radio	sound	
		ultrasound	ultraviolet	visible light		
	Wri	te down one wave from t	he list that is			
	(i)	a transverse wave,				
						[1]
	(ii)	a longitudinal wave,				
						[1]
((iii)	emitted by hot objects b	ut cannot be seen	by the human ey	/e.	
						[1]

(c) A fishing boat uses echo sounding to detect a shoal of fish.

Short pulses of high frequency sound are sent out from the boat and the echo from the shoal of fish is detected 0.2 seconds later.

Sound waves travel through water at a speed of 1600 m/s.

(i) Calculate the distance that the shoal of fish is below the boat.

Show your working and state the formula that you use.

formula used

working

(ii) The sound waves have a wavelength of 0.2 m. Calculate the frequency of the waves.

Show your working and state the formula that you use.

formula used

working

[3]

.....[2]

2 (a) Fig. 2.1 shows a vertical section through a human heart.

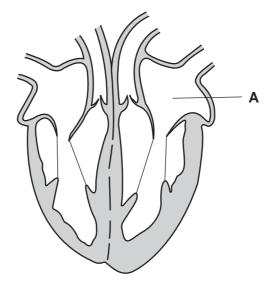


Fig. 2.1

- (i) Name the part labelled A. [1]
 (ii) Using a labelling line and the letter M, label the muscular wall of the left ventricle.[1]
- (b) The muscular walls of the heart are supplied with oxygen by blood that flows through the coronary arteries.

Explain why a person may suffer a heart attack if one of the coronary arteries becomes blocked.

[3]


(c) Table 2.1 shows part of a chart that doctors in New Zealand use to estimate the chances of a woman having a heart attack.

5

	percenta	percentage of women who are expected to have a heart attack within 5 years						
	age 40 age 50 age 60 age 70					70		
	no diabetes	with diabetes	no diabetes	with diabetes	no diabetes	with diabetes	no diabetes	with diabetes
non-smokers	1	3	3	7	5	12	7	23
smokers	4	7	6	13	12	22	15	33

Table 2.1

(i) Use the information in Table 2.1 to describe how a woman's age affects her chances of having a heart attack, if she does not have diabetes and does not smoke.

(ii) Imagine that you are a doctor. A woman smoker with diabetes asks you how she can improve her chances of living a long and healthy life.

Explain how you would use the **information in Table 2.1** to explain to her why it is very important that she should give up smoking.

[3]

(iii) State **one** step that the woman could take, other than giving up smoking, which might reduce her chances of having a heart attack.

......[1]

[1]

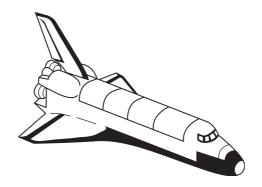
3 The chemical symbol of the element lithium is shown below.

.....

7 3

- (a) (i) State the number of electron shells (energy levels) in a lithium atom.
 - (ii) Lithium is obtained as the free element by electrolysis of molten lithium chloride, LiC*l*.
 Explain briefly how lithium ions, Li⁺, become atoms at the cathode in this process.

[1]

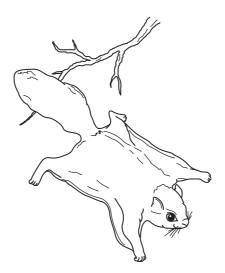

(b) Lithium reacts with water according to the symbolic equation below.

 $2Li + 2H_2O \longrightarrow 2LiOH + H_2$

Explain why fire-fighters must **not** use water to try to extinguish burning lithium.

[2]

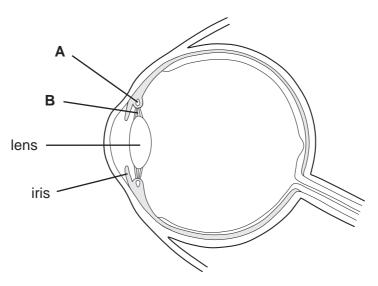
(c) Lithium hydroxide crystals are used in manned space vehicles to remove carbon dioxide gas from the air exhaled by the astronauts.



The symbolic equation for this reaction is

 $2\text{LiOH} + \text{CO}_2 \longrightarrow \text{Li}_2\text{CO}_3 + \text{H}_2\text{O}$

4 Fig. 4.1 shows a flying squirrel. A flying squirrel uses large flaps of skin as a form of parachute to enable it to fall, glide and land safely. The air trapped under these flaps, as the squirrel falls, provides an upward force called air resistance.


8

(a) (i) As the squirrel starts to fall, it is accelerating. State the meaning of the term accelerating. [1] (ii) The squirrel weighs 20 N. Suggest a value for the air resistance while the squirrel is accelerating. air resistance N Explain your answer. (iii) At one point as the squirrel falls, the resultant downward force on the squirrel is 10 N. Calculate the acceleration of the squirrel if its mass is 2 kg. Show your working and state the formula that you use. formula used working [2]

		9	For Examiner's
(b)	Lat	er in its fall, the squirrel reaches a steady speed (terminal velocity) of 3 m/s.	Use
	(i)	State the value of the air resistance now.	
		air resistance N	
		Explain your answer.	
		[2]	
	(ii)	Explain why the value of the air resistance has changed.	
		[1]	
	(iii)	The surface area of the squirrel on which the air resistance acts is 0.4 m ² . Use your answer to (b)(i) and the formula	
		pressure = $\frac{\text{force}}{\text{area}}$	
		to calculate the pressure on the squirrel.	
		Show your working.	
		[2]	
		[2]	

10

Fig. 5.1

- (a) When the eye focuses on a near object, the lens becomes thicker.
 - (i) Describe the changes that will take place in parts **A** and **B** when the eye focuses on a near object.

Α.	
В.	
	 [2]

(ii) Explain why the lens needs to become thicker in order to focus on a near object. You may draw a diagram if it helps your answer.

[3]

(b) The iris is the coloured part of the eye. It can become wider or narrower to regulate the amount of light that can reach the retina.

The colour of the iris of a rabbit is determined by the rabbit's genes. A rabbit with the genotype **Bb** or **BB** has brown eyes. A rabbit with the genotype **bb** has yellow eyes.

(i) Use a genetic diagram to explain how two rabbits with brown eyes may have young with yellow eyes.

[3]

Occasionally, a mutation occurs in some of the cells of the iris, which may result in the iris becoming a different colour.

(ii) Ionising radiation may cause mutation. Explain how it does this.

[1]

(iii) Explain why this change in colour of the iris will not be passed on to the rabbit's offspring.

[2]

6 Fig. 6.1 shows the apparatus a student used to investigate the effect of strong heating on sodium hydrogencarbonate, NaHCO₃.

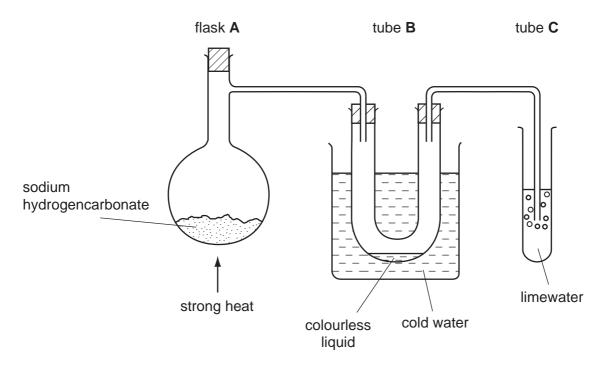


Fig. 6.1

Table 6.1 shows observations the student made before and after heating the sodium hydrogencarbonate for several minutes.

Table	6.1
-------	-----

	before heating	after heating
flask A	white solid	white solid
tube B	tube empty	colourless liquid has condensed
tube C	clear liquid	liquid has become cloudy

(a) State two observations from Table 6.1 which show that a chemical reaction occurs when sodium hydrogencarbonate is heated.

1.	
2.	
	[2]

(b) An incomplete symbolic equation for the reaction in Fig. 6.1 is shown below.

 $2NaHCO_3 \longrightarrow Na_2CO_3 + CO_2 + \dots$

Use the incomplete equation above to deduce the name of the colourless liquid which condenses in tube B. Explain your answer.

[2]

(c) Sodium carbonate is sometimes added to hard water in order to soften it. The symbolic equation below shows the reaction that occurs when sodium carbonate is added to a sample of hard water.

In this equation the symbols (aq) and (s) show whether the substance is an aqueous solution or a solid respectively.

 $Na_2CO_3(aq) + CaCl_2(aq) \longrightarrow 2NaCl(aq) + CaCO_3(s)$

(i) Name the type of chemical reaction shown above.

(ii) Explain why this reaction softens the water.
[1]

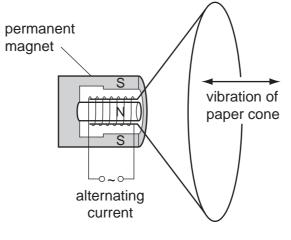
(d) Sodium carbonate is mixed with silicon(IV) oxide and other oxides to make glass. The mixture has to be heated to a very high temperature in order to melt it and allow the glass to form.
 Explain, in terms of their structures, why compounds like sodium carbonate and silicon(IV) oxide have such high melting points.

[3]

- 7 (a) A car has two headlight lamps at the front and two rear light lamps at the back. All four lamps are connected in parallel with each other across a 12V battery.
 - (i) Draw a circuit diagram to show how the two headlight lamps are connected to the battery. Include a switch in your circuit to control the two headlight lamps.

[3]

(ii) If one lamp fails, the other stays lit. Explain why this happens.


[1]

(iii) Each headlight lamp takes a current of 5 A and each rear light lamp takes a current of 1 A. What is the total current taken by these four lamps?

Show your working

[2]

(b) Fig. 7.1 shows a speaker for a car radio.

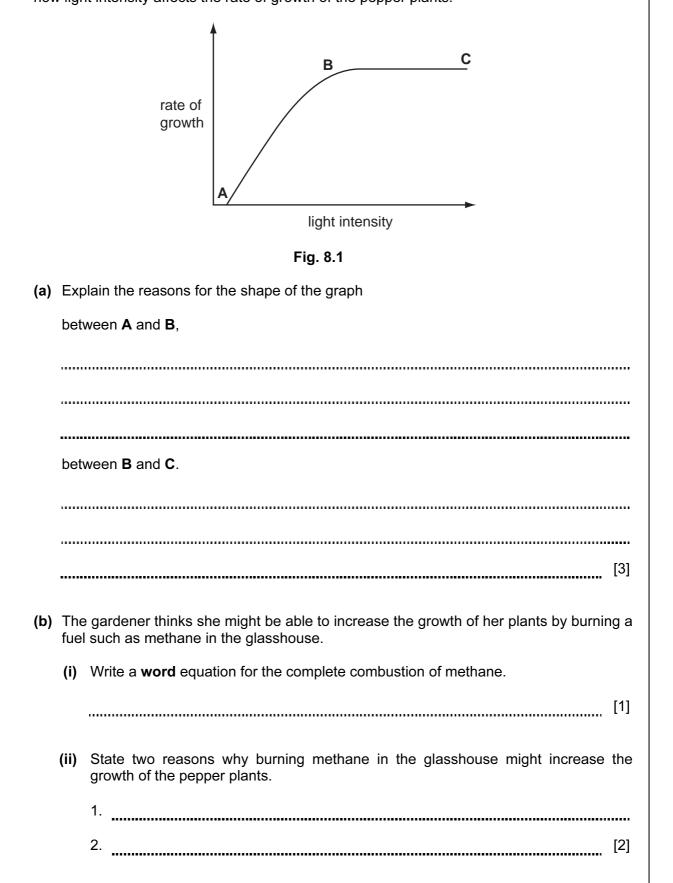

15

Fig. 7.1

Explain why the cone of the speaker vibrates when an alternating current passes through the coil.

		[3]
(c)		e pressure of the air in car tyres must be correct to give a good grip on the road face.
	(i)	Explain in terms of particles why adding more air to a car tyre increases the pressure in the tyre.
		[2]
	(ii)	Tyres become warmer during long journeys. Explain in terms of particles why this will result in an increase in tyre pressure.
		[2]

8 A gardener in a country with a cool climate grows peppers in a glasshouse. Fig. 8.1 shows how light intensity affects the rate of growth of the pepper plants.

(i) Suggest **one** compound which can be found in a fertiliser and which provides nitrogen to the plants in a form that they can use.

		[1]
(ii)	Explain why extra nitrogen can increase the growth of plants.	
		[2]
(iii)	Explain how the careless use of nitrogen-containing fertilisers near to streams lakes can harm the organisms that live in them.	and
		•••••

[3]
 r.1

.....

9 (a) Table 9.1 shows some information about two elements X and Y. Both elements are in the third period of the Periodic Table.
 Complete the table by writing the words high or low in the empty boxes. Two of the boxes have already been completed.

_		-	
Та	ble	9.	1

element	group number in Periodic Table	melting point	electrical conductivity	pH of element oxide in water
x	2	high		
Y	7	low		
				[2

(b) A compound from which the metal titanium can be extracted is ilmenite, TiFeO₃. In order to obtain titanium, ilmenite is first processed to form titanium chloride. Titanium chloride is then reacted with magnesium. Symbolic equations for these two reactions are shown below.

reaction 1 $2\text{TiFeO}_3 + 7\text{C}l_2 + 6\text{C} \longrightarrow 2\text{TiC}l_4 + 2\text{FeC}l_3 + 6\text{CO}$ reaction 2 $\text{TiC}l_4 + 2\text{Mg} \longrightarrow 2\text{MgC}l_2 + \text{Ti}$

(i) Name **one** element which has been oxidised in **reaction 1**. Explain your answer.

[1]

(ii) Fig. 9.1 shows a diagram of a chlorine atom, showing only the outer electron shell.

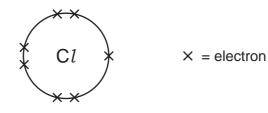


Fig. 9.1

[2]

Draw a diagram to show how the outer electrons are arranged in a molecule of chlorine.

19

(iii) Describe how the arrangement of the electrons around the magnesium atoms changes during **reaction 2**.

[2]

(c) Alloys containing large amounts of titanium are widely used to make replacement hip joints.

pelvis replacement hip joint made of titanium alloy femur (thigh bone) Suggest why an alloy of titanium rather than pure titanium is more suitable for making replacement hip joints which have to carry a person's weight.	joints.	
replacement hip joints which have to carry a person's weight.	replacement hip joint made of titanium alloy	
[2]		
	[2]	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET The Periodic Table of the Elements

								Gro	Group								
_	=											≡	\geq	>	N	١N	0
							1 Hydrogen										4 Helium 2
7 Lithium 3 23 23 23 11 11 50dium	9 Beryllium 24 Magnesium	E E				, 						11 B Baron 5 27 A1 A1 13	12 Carbon 6 28 28 28 14 14	14 Nitrogen 31 Phosphorus 15	16 O Oxygen 32 32 Supptur 16	19 Fluorine 35.5 Chlorine	20 Neon 40 Ar Ar
39 K Potassium 19	n 20 40 Calcium	45 Scandium 21	48 TT 22	51 Vanadium 23	52 Cr Chromium 24	55 Mn Manganese 25	56 F e Iron 26	59 Co 27 27	59 Nickel 28	64 Copper 29	65 Zn 30	70 Gal lium 31	73 Ge Germanium 32	75 AS Arsenic 33	79 Se Selenium 34	80 Br Bromine 35	84 Kr Krypton 36
85 Rb Rubidium 37	88 Sr 38	89 Yttrium 39	91 Zr Zirconium 40	93 Nb Niobium 41	96 MO Molybdenum 42	Technetium 43	101 Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium 49	119 Sn 50	122 Sb Antimony 51	128 Te ^{Tellurium} 52	127 I Iodine 53	131 Xe Xenon 54
133 CS ^{Caesium} 55	137 Ba Barium 56	139 La Lanthanum 57	178 Hf Hafnium 72	181 Ta ^{Tantalum} 73	184 V Tungsten 74	186 Re Rhenium 75	190 OS Osmium 76	192 Ir 11dium 77	195 Pt Platinum 78	197 Au Gold 79	201 Hg Mercury 80	204 T Thallium 81	207 Pb Lead 82	209 Bi Bismuth	PO Polonium 84	At Astatine 85	Radon 86
Fr Francium 87	226 Radium 88	Actinium 89															
*58-71 90-100	58-71 Lanthanoid seri 90-103 Actinoid series	*58-71 Lanthanoid series 90-103 Actinoid series		140 Ce Cerium 58	141 Pr Praseodymium 59	144 Nd Neodymium 60	Promethium 61	150 Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb ^{Terbium} 65	162 Dy Dysprosium 66	165 HO Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	173 Yb Ytterbium 70	175 Lu Lutetium 71
Key	ه X	a = relative atomic mass X = atomic symbol b = proton (atomic) number	omic mass nbol mic) number	232 Th Thorium	Pa Protactinium 91	238 Uranium 92	Neptunium 93	Putonium 94	Am Americium 95	Cm curium 96	BK Berkelium 97	Californium 98	Einsteinium 99	Fm Fermium 100	Mendelevium 101	Nobelium 102	Lr Lawrencium 103

20

The volume of one mole of any gas is $24 \, dm^3$ at room temperature and pressure (r.t.p.).