

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

	CANDIDATE NAME		
* 1 7	CENTRE NUMBER	CANDIDATE NUMBER	
	CO-ORDINATE	D SCIENCES	0654/23
4 5	Paper 2 (Core)		May/June 2013
671	Candidates ans	wer on the Question Paper.	2 hours
3 0		laterials are required.	
*	READ THESE I	NSTRUCTIONS FIRST	

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units. A copy of the Periodic Table is printed on page 28.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 27 printed pages and 1 blank page.

BLANK PAGE

1 Fig. 1.1 shows an experimental car powered by solar panels.

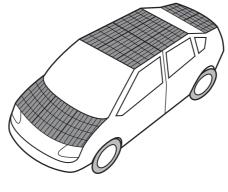


Fig. 1.1

(a) The speed/time graph in Fig. 1.2 shows the motion of the car over a short time.

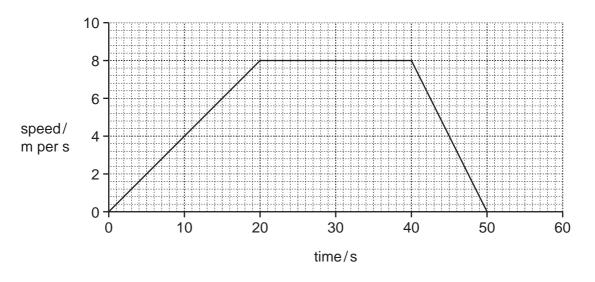
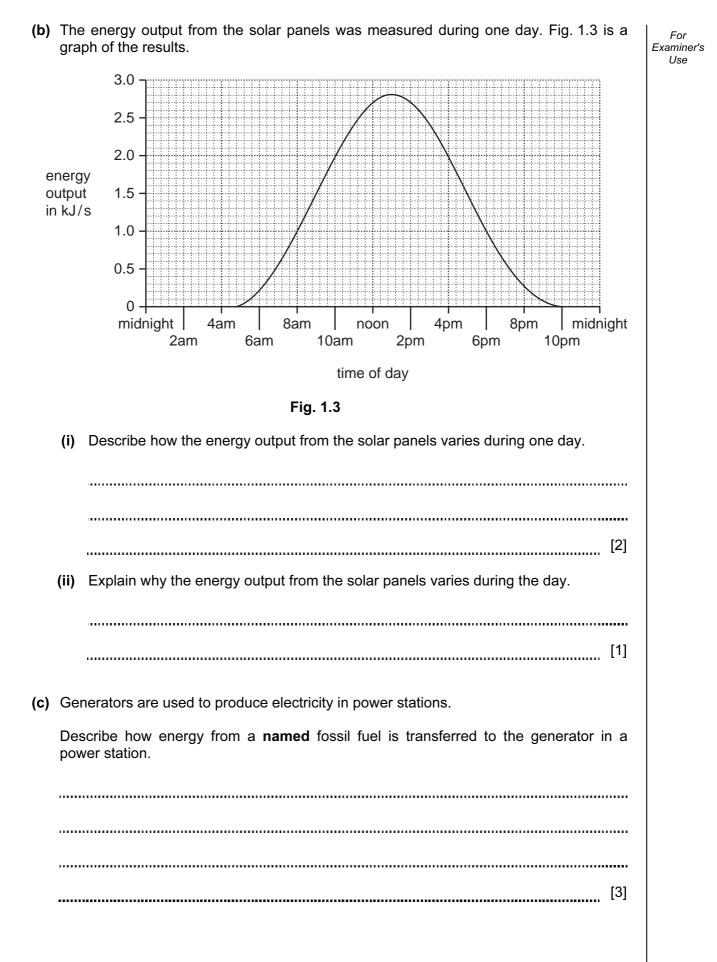


Fig. 1.2

On Fig. 1.2 label


N at a point at which the car was not moving,

A at a point when the car was accelerating,

C at a point at which the car was travelling at constant speed.

[3]

For Examiner's Use

(d) Fig. 1.4 shows a small photovoltaic cell (solar cell) being investigated.

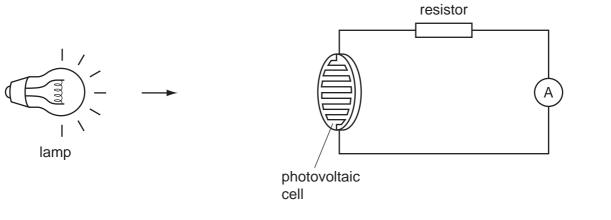


Fig. 1.4

A voltmeter is added to the circuit to measure the voltage across the photovoltaic cell.

Using the correct symbol, draw the voltmeter in the correct position on Fig. 1.4. [2]

(e) The car has mirrors to help the driver see behind the car. The driver sees a truck in his mirror as shown on Fig. 1.5.

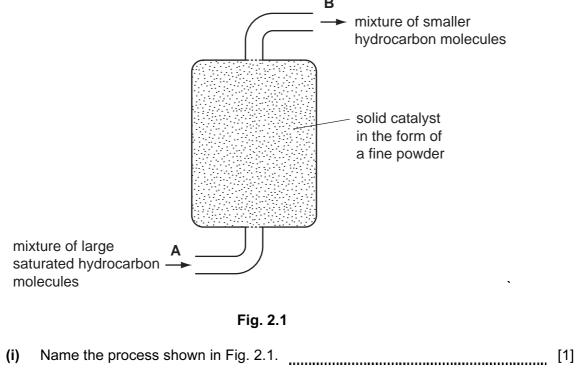

Use Fig. 1.5 to describe **two** characteristics of an image seen in a plane mirror apart from size.

Fig. 1.5

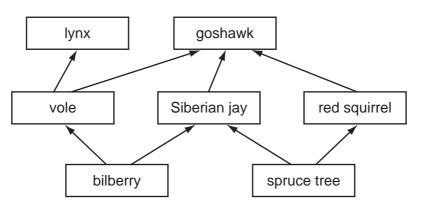
[2]

For Examiner's Use Petroleum (crude oil) is a mixture of hydrocarbons. For Examiner's Use (a) Three useful products obtained from petroleum are refinery gas, gasoline (petrol) and diesel oil (gas oil). (i) State one use for each of these products. refinery gas gasoline diesel oil [3] (ii) Name two compounds that are produced when hydrocarbons undergo complete combustion. 1 2 [2] (iii) Explain why combustion of hydrocarbons is an example of an oxidation reaction. [1] (b) Fig. 2.1 shows a simplified diagram of a process which is used to convert large saturated hydrocarbon molecules into smaller, more useful molecules. В

(ii) A chemist takes samples of the mixture of compounds from point A and point B in Fig. 2.1. Examiner's

He adds bromine solution to each sample and shakes the mixture.

Predict and explain the appearance of each mixture after shaking with bromine solution.


sample from point A	
sample from point B	
explanation	
	[4]

For

Use

3 Fig. 3.1 shows part of a food web in a northern forest. The arrows show the direction of energy flow.

For Examiner's Use

(a) Complete Table 3.1 by selecting **two** organisms from the food web that belong in **each** column.

You can use each organism once, more than once or not at all.

Table	3.1
-------	-----

	producer	consumer	herbivore	carnivore
organism 1				
organism 2				

[4]

(b) If the forest is cut down, the species in the food web may not be able to survive.

List two other undesirable effects that may occur if the forest is cut down.

A student added excess magnesium to dilute hydrochloric acid. During the reaction, the thermometer reading changed. thermometer dilute hydrochloric acid excess magnesium ribbon (a) (i) State two observations which show that a chemical change occurs when magnesium is added to dilute hydrochloric acid. 1 2 [2] (ii) Name the gas that is given off in this reaction and describe a test for this gas. name test[2] (iii) Explain why the pH of the mixture increases during the reaction. [2]

0654/23/M/J/13

4

For Examiner's Use (b) The student set up the apparatus shown in Fig. 4.1.

She investigated the rate of reaction between magnesium and dilute hydrochloric acid.

10

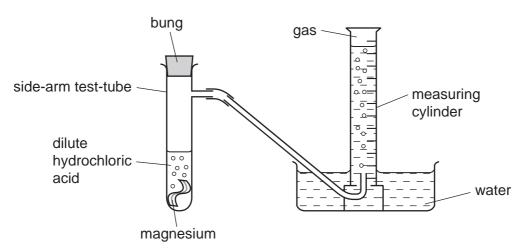


Fig. 4.1

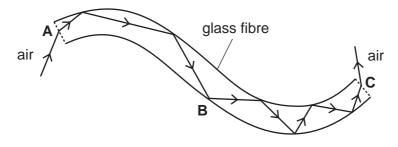
At the start of the experiment, the measuring cylinder contained no gas and was full of water.

(i) The student knew that the speed at which the gas is produced is a good way of measuring the rate of reaction.

What should the student measure to find the rate at which gas is produced?

[2]
(ii) State two variables that affect the rate of reaction between magnesium and dilute hydrochloric acid.
1 ______
2 ______

[1]


For Examiner's Use

(ii) State **one** way in which the waves in different regions of the electromagnetic spectrum differ from each other.

(i) Name a region of the electromagnetic spectrum that is used in remote control

```
[1]
```

(b) Fig. 5.1 shows a light ray passing from the air through a glass fibre, and back out into the air.

Use **one** of the phrases to complete the sentences below.

Each phrase can be used once, more than once or not at all.

hits at an angle greater than the critical angle.

hits at an angle less than the critical angle.

is passing into a less dense medium.

is passing into a more dense medium.

The ray of light changes direction at

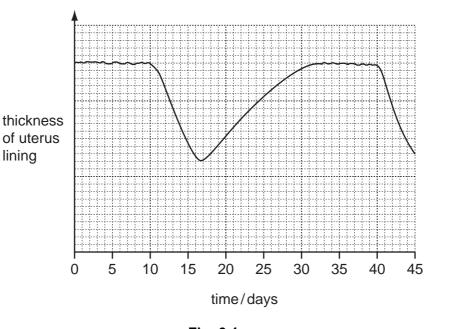
devices for televisions.

(a) Visible light and γ -(gamma) radiation are two regions of the electromagnetic spectrum.

(c) (d)	One source of background radiation is cosmic rays. Cosmic rays are 90% protons, 9% α -(alpha) particles and 1% electrons. (i) What is an α -particle? [1] (ii) Name a source of background radiation apart from cosmic rays. [1] The following sentence about α -particles was written by a student. The statement is not correct. α -particles can pass through a thin sheet of lead	For Examiner's Use
(e)	Change the statement to make it correct. Write your correct statement below. [1] Underline the two pieces of equipment that detect ionising radiations. ammeter Geiger-Müller tube litmus paper	
	newton-meter photographic film thermometer [2]	
(f)	Three of the following statements are true. Tick the correct statements. Both α -(alpha) radiation and β -(beta) radiation pass easily through the body. α -radiation damages cells in a very localised area of the body. lonisation does not always kill cells – sometimes it causes them to mutate. Cancer occurs when a large number of cells are killed. The dose of radiation received depends on the length of exposure.	

(g)	Most atoms contain ele	ctrons, protons and neutrons.		For Examiner's
	State which of these pa	rticles		Use
	has the least mass,			
	has no charge,			
	has a negative charge,			
	are in the nucleus.	and	[4]	

6 (a) The words in the list below are all related to human reproduction.

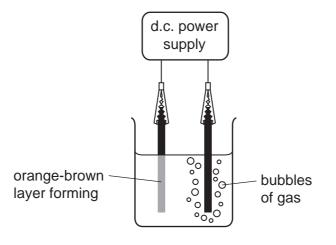

Choose words from the list to match each description. You may use each word once, more than once or not at all.

	oviduct	prostat	e glanc	I	sperm	
t	testis	urethra	uter	us	zygot	e
	ed when the n emale gamete					
a male gamete						
the organ in which sperms are made						
the place w	here fertilisat	ion occurs				

[4]

For Examiner's Use

(b) Fig. 6.1 shows changes in the thickness of a woman's uterus lining over a time interval of 45 days.



- Fig. 6.1
- (i) Use Fig. 6.1 to estimate the number of days for which one menstrual cycle lasted.

(ii) Suggest the day on which an egg was released from the woman's ovaries.

(c)	Aw	oman with HIV/AIDS can pass the disease to her child.	For
	(i)	What does the abbreviation HIV stand for?	Examiner's Use
		[1]	
	(ii)	Describe how a woman can pass the disease to her child.	
		,	
		[2]	

- 7 (a) (i) Copper is used to make water pipes, cooking pots and electrical wires. For Examiner's Use State three different properties of copper that make it a suitable material for these uses. 1 2 _____ [3] 3 (ii) Name the family of metals in the Periodic Table which includes copper. [1] (b) Bronze is a mixture containing copper and tin. (i) State the general name of materials such as bronze.[1] (ii) State one advantage of bronze compared with copper.[1]
 - (c) Fig. 7.1 shows a process in which a copper compound is split into elements.

(i) Name the process shown in Fig. 7.1. [1]

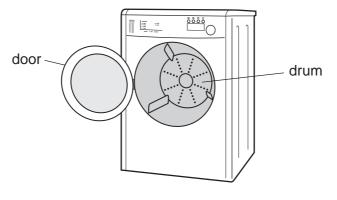
(ii) On Fig. 7.1 label the cathode.

[1]

(iii) One of the products of the process shown in Fig. 7.1 is a gas. This gas bleaches damp litmus paper. Examiner's

Name the copper compound that is being separated into its elements.

Explain your answer. name of compound explanation [2]

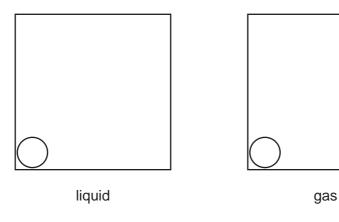

[Turn over www.theallpapers.com

For

Use

8 Fig. 8.1 shows a washing machine. When the door is closed and the machine is switched on, an electric motor rotates the drum and clothes.

18



(a) Choose words from the list below to complete the sentences.

chemical nuclear	heat gravitationa	kinetic I potential	light sound
In an electric motor, the usefu	ul energy trans	fer is electrical	energy into
		energy.	
Some of the electrical energy	supplied to the	e motor is was	ted as
		energy and	ł
		energy.	

- (b) Inside the washing machine, some of the water evaporates when the washing machine is being used.
 - (i) During evaporation, water changes state from liquid to gas.

Complete the diagrams to show the arrangement of particles in a liquid and in a gas.

For

Examiner's Use 19

(ii) Explain, in terms of particles, the process of evaporation.

[3]

(c) A current of 3A passes through the heating element when the voltage across it is $220 \, \text{V}$.

Calculate the resistance of the heating element.

State the formula that you use and show your working.

formula

working

.....Ω [2]

For Examiner's Use **9** Fig. 9.1 shows a pitcher plant, which grows in Malaysia and Indonesia.

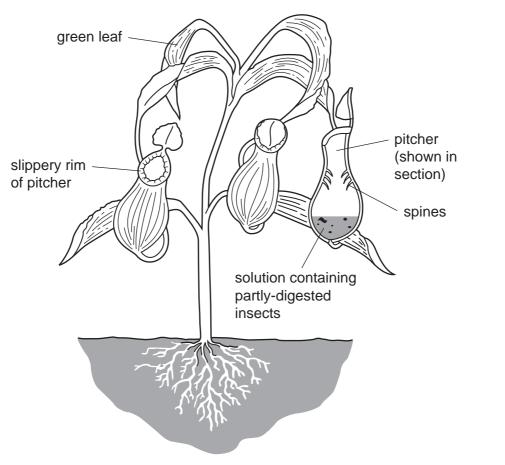


Fig. 9.1

Table 9.1

- (a) The leaves of pitcher plants carry out photosynthesis, using carbon dioxide and water to make carbohydrates. They obtain carbon dioxide and water in the same way as other plants.
 - (i) Complete Table 9.1 to show how the leaves obtain carbon dioxide and water. You do not need to write anything in the shaded box.

substance	source	part of plant that absorbs it	process by which it is absorbed
carbon dioxide	air		
water			

[4]

For Examiner's Use

(ii) Write the word equation for photosynthesis.

[2]

(b) Pitcher plants grow where the concentration of nitrate ions in the soil is very low. Most plants need nitrate ions to make amino acids and proteins.

Pitcher plants use a different way of obtaining amino acids. They trap insects in their pitchers, and produce a solution that digests the proteins in the insects' bodies.

(i) Describe **two** features of the pitchers, shown in Fig. 9.1, that help to trap insects inside them.

[2]

(iii) Suggest what is present in the solution that the pitcher plant produces inside its pitchers, to enable digestion to take place.

[1]

For

Examiner's Use (c) A scientist investigated the hypothesis that a scent produced by the rim of the pitchers acts as a stimulus that attracts insects.

She took several identical Petri dishes.

- She placed a piece of the rim of a pitcher, *or* a small amount of solution from inside the pitcher *or* water, on one side of the dish (side **A**).
- She put a small amount of water on the other side (side **B**) as shown in Fig. 9.2.
- She then placed an insect in the centre of the dish. She recorded which side of the dish the insect moved to.

She repeated this 19 more times, using a different insect each time.

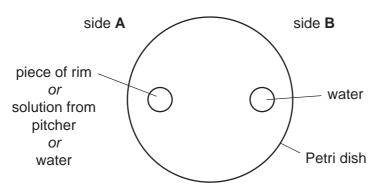


Table 9.2 shows her results.

Table	9.2
-------	-----

substance on side A of dish	substance on side B of dish	number of insects that moved to each side		
		Α	В	
piece of rim	water	16	4	
solution from pitcher	water	4	16	
water	water	10	10	

(i) Suggest why the scientist placed water on both sides of some dishes.

(ii) Do the results support the scientist's hypothesis? Explain your answer.
[2]

Wood ash contains calcium carbonate and potassium compounds, which can be used to improve the quality of soil. (i) Explain briefly how calcium carbonate and potassium compounds could improve the quality of soil. calcium carbonate potassium compounds [3] (ii) Suggest how a sample of wood ash could be tested to show that it contained carbonate ions. [2] (b) Soil quality is also improved by the addition of nitrogen compounds such as ammonium sulfate, (NH₄)₂SO₄. (i) State the total number of atoms shown combined in the chemical formula $(NH_4)_2SO_4.$[1] (ii) Ammonium sulfate is the product of a reaction between an alkaline solution of ammonia and an acid. Name the acid that reacts with ammonia to form ammonium sulfate and state the type of chemical reaction that occurs. name of acid

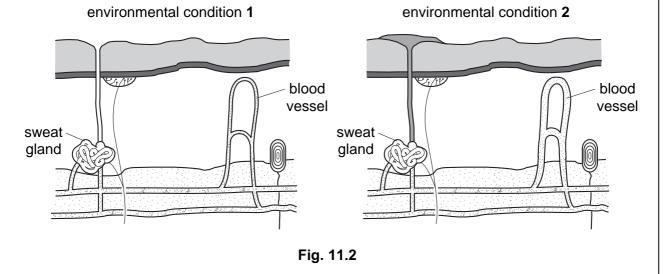
name of acid	
type of reaction	 [2]

10 (a) When wood is burnt, a solid material known as wood ash remains.

For Examiner's Use (iii) Outline how crystals of ammonium sulfate could be obtained from a solution of ammonium sulfate. For Examiner's Use [2]

...

Please turn over for Question 11.


11 (a) Complete the graph in Fig. 11.1 to show how enzyme activity is affected by temperature. You should write in at least two values for temperature on the Examiner's 'temperature' axis.

> rate of enzyme activity 0 temperature/°C [3]

Fig. 11.1

(b) The internal body temperature of a human is kept constant, allowing enzymes to work efficiently. The skin helps to do this.

Fig. 11.2 shows a section through the skin in two different environmental conditions.

For

Use

(i)	Describe two ways in which the skin in environmental condition 2 differs from environmental condition 1 .	For Examiner's Use
	1	
	2	
	[2]	
(ii)	Suggest how environmental condition 2 differs from environmental condition 1 .	
	[1]	
(iii)	The muscles also help to maintain a constant body temperature.	
	Explain how the muscles can help to return a low body temperature to normal.	
	[2]	

27

	0	⁴ Helium	20 Neon 10	Ar Argon 18	84 Kr ypton	36 131 Xe	Xenon 54	Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103
	١١٨		9 35.5 35.5	Chlorine	80 Bromine	35 127 I	lodine 53	At Astatine 85		173 Yb ^{Ytterbium} 70	Nobelium 102
	N		a 32 Oxygen O 16	Sulfur Sulfur	79 Se Selenium	34 128 Te	Tellurium 52	Polonium 84		169 Tm Thulium 69	Mendelevium 101
	>		7 Nitrogen 14	Phosphorus 15	75 AS Arsenic	³³ 5 b	Antimony 51 209	Bismuth 83		167 Er Erbium 68	Fermium 100
	\geq	2	3 58 Carbon C 12	Silicon	73 Ge Germanium	32 119 Sn	Tin 50 207	Pb Lead 82		165 Ho Holmium 67	Einsteinium 99
	≡		5 Boron 27	AL Auminium 13	70 Ga Gallium	31 115 n	Indium 49 204	T1 Thallium 81		162 Dysprosium 66	Cf Californium 98
cille					65 Zn Zinc	30 112 Cd	Cadmium 48 201	Hg ^{Mercury} 80		159 Tb ^{Terbium} 65	BK Berkeium 97
Group dauge of the Elements					64 Cu Copper	¹⁰⁸ Ag	Silver 47 197	Au Gold 79		157 Gd Gadolinium 64	Curium B6
Group					59 Nickel	²⁸ 106 Pd	Palladium 46 195	Platinum 78		152 Eu Europium 63	Am Americium 95
Gro					59 Co balt	27 103 Rh	Rhodium 45 192	Ir Iridium 77		150 Smarium 62	
		¹ Hydrogen			56 Fe Iron	26 101 Ru	Ruthenium 44 190	OS Osmium 76		Promethium 61	Neptunium 93
			-		55 Mn ^{Manganese}	²⁵ Tc	Technetium 43 186	Rhenium 75		144 Neodymium 60	238 U Uranium 92
					52 Cr Chromium	⁹⁶ Mo	Molybdenum 42 184	Tungsten 74		141 Pr Praseodymium 59	Protactinium 91
					51 V Inadium		Niobium 41 181	Ta Tantalum 73		140 Ce Cerium 58	232 Thorium 90
					48 Titanium	²² 91	Zirconium 40 178	Hafnium 72			lic mass ool lic) number
					45 SC Scandium	21 89	Yttrium 39 139	La Lanthanum 57 *	227 AC Actinium 89 †	series eries	a = relative atomic mass X = atomic symbol b = proton (atomic) number
							_			io oi	p × a
	=		9 Beryllium 24	Mg Magnesium 12	40 Ca lcium	²⁰ St ⁸⁸	Strontium 38 137	Ba Barium 56	226 Ra 88	*58-71 Lanthanoid series 190-103 Actinoid series	α ×

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

www.theallpapers.com