
	Candidate Number Name	
-	SITY OF CAMBRIDGE INTERN	
	ernational General Certificate of	Secondary Education
CO-ORDINA	TED SCIENCES	0654/03
Paper 3 Exte	ended	May/Juna 2006
		May/June 2006
	swer on the Question Paper. laterials are required.	2 hours
Write in dark blue or bl	ber, candidate number and name on a	-
Answer all questions.		
You may use a pencil f A copy of the Periodic At the end of the exam	for any diagrams, graphs, tables or roo Table is printed on page 24. ination, fasten all your work securely t s given in brackets [] at the end of ea	together.
You may use a pencil f A copy of the Periodic At the end of the exam	Table is printed on page 24. ination, fasten all your work securely t	together.
You may use a pencil f A copy of the Periodic At the end of the exam	Table is printed on page 24. ination, fasten all your work securely t	together. ach question or part question.
You may use a pencil f A copy of the Periodic At the end of the exam	Table is printed on page 24. ination, fasten all your work securely t	together. ach question or part question. For Examiner's U
You may use a pencil f A copy of the Periodic At the end of the exam	Table is printed on page 24. ination, fasten all your work securely t	together. ach question or part question. For Examiner's U 1
You may use a pencil f A copy of the Periodic At the end of the exam	Table is printed on page 24. ination, fasten all your work securely t	together. ach question or part question. For Examiner's U 1 2
You may use a pencil f A copy of the Periodic At the end of the exam	Table is printed on page 24. ination, fasten all your work securely t	together. ach question or part question. For Examiner's U 1 2 3
You may use a pencil f A copy of the Periodic At the end of the exam	Table is printed on page 24. ination, fasten all your work securely t	together. ach question or part question. For Examiner's U 1 2 3 4
You may use a pencil f A copy of the Periodic At the end of the exam	Table is printed on page 24. ination, fasten all your work securely t	together. ach question or part question. For Examiner's U 1 2 3 4 5
You may use a pencil f A copy of the Periodic At the end of the exam	Table is printed on page 24. ination, fasten all your work securely t	together. ach question or part question. For Examiner's U 1 2 3 4 5 6
You may use a pencil f A copy of the Periodic At the end of the exam	Table is printed on page 24. ination, fasten all your work securely t	together. ach question or part question. For Examiner's U 1 2 3 4 5 6 7
You may use a pencil f A copy of the Periodic At the end of the exam	Table is printed on page 24. ination, fasten all your work securely t	together. ach question or part question. For Examiner's U 1 2 3 4 5 6 7 8

This document consists of **21** printed pages and **3** blank pages.

1	Bloo	od contains red cells, white cells and plasma.
	(a)	Outline the function of white blood cells.
		[2]
	(b)	The heart pumps blood around the body. Explain how the heart pushes blood into the arteries.
		[2]
	(c)	State one difference between the structure of arteries and the structure of veins. Explain how this difference relates to their different functions.
		structure
		function
		[3]
	(d)	Plants do not have a heart to pump fluids around them. Water is carried through xylem vessels from a plant's roots to its leaves.
		Explain why this happens more quickly when it is warm than when it is cold.
		[3]

2 (a) A student uses a pH sensor connected to a computer to investigate four liquids, A, B, C and D. The apparatus is shown in Fig. 2.1.

The results obtained when the pH sensor was placed into the liquids in the test-tubes are shown in Table 2.1.

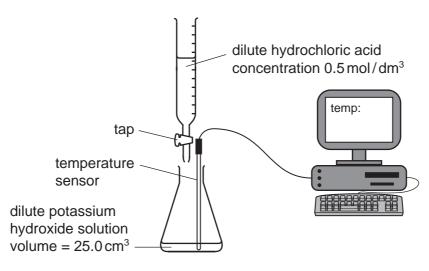

tube	рН
Α	14.0
В	7.0
С	1.0
D	6.0

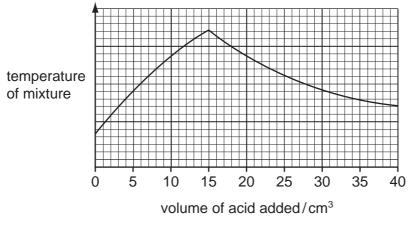
Table	2.	1
-------	----	---

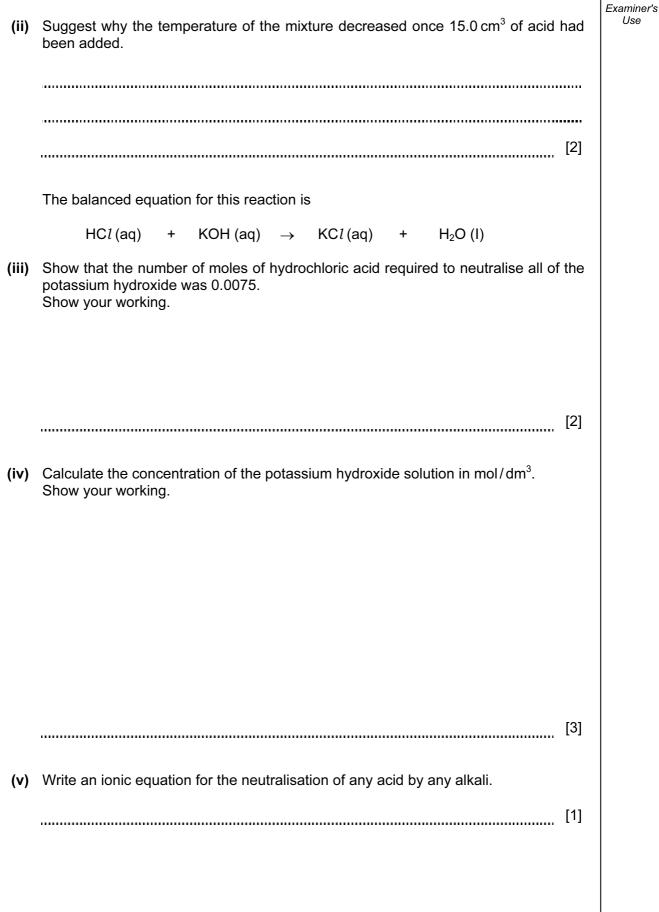
(i)	Which liquid in Table 2.1 could be pure water? Explain your answer.
	[1]
(ii)	Which liquid in Table 2.1 would react with iron(II) sulphate to form a green precipitate of iron(II) hydroxide? Explain your answer.
	[2]
(iii)	Which liquid in Table 2.1 contains the highest concentration of H^+ ions? Explain your answer.
	[1]

[Turn over www.theallpapers.com

(b) The student then used a temperature sensor in a second experiment as shown in Fig. 2.2.

The student opened the tap and added the hydrochloric acid slowly to the potassium hydroxide solution. She plotted a graph of the temperature of the mixture against the volume of acid added. Her graph is shown in Fig. 2.3.



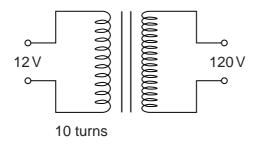

Fig. 2.3

The mixture became neutral when 15.0 cm³ of acid had been added.

(i) Explain why the temperature of the mixture increased when the acid was first added to the potassium hydroxide solution.

For

For


		6	For Examiner's
(a)	Nuc	clear fission and nuclear fusion are both sources of energy.	Use
	(i)	Apart from releasing energy, in what way are these two processes similar?	
		[1]	
	(ii)	In what way are these two processes different?	
		[1]	
	(iii)	There are safety concerns about the use of nuclear fission as an energy resource. Describe and explain one of these safety concerns.	
		[3]	
(b)	(i)	The voltage of electricity generated in a power station is increased using transformers for transmission through power lines to the users.	
		Explain why this is done.	

6

	[2]
	[4]

3

(ii) Fig. 3.1 shows a diagram of a simple transformer.

Use the equation $\frac{V_p}{V_s} = \frac{N_p}{N_s}$ to calculate the number of turns on the coil in the secondary circuit.

number of turns = [1]

(iii) Explain how a transformer changes the voltage of an electrical supply. Your explanation should include the terms *induced current* and *magnetic field*.

[3]

4 Big-horn sheep live on rocky mountain sides in Canada. The males have very large horns. The size of their horns is caused by their genes.

8

(a) State **one** feature shown in the photograph that is found only in mammals.

(b) (i) Name the part of a cell that contains the genes.	
	[1]
(ii) In which cells in the big-horn sheep's body will the gene for horn size be presen	t?
	[1]

(c) Hunters kill big-horn sheep and keep their horns as trophies. They kill the sheep with the largest horns.

Fig. 4.1 shows how the average size of the horns in a population of big-horn sheep changed between 1970 and 2005.

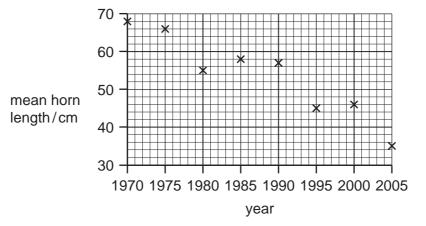
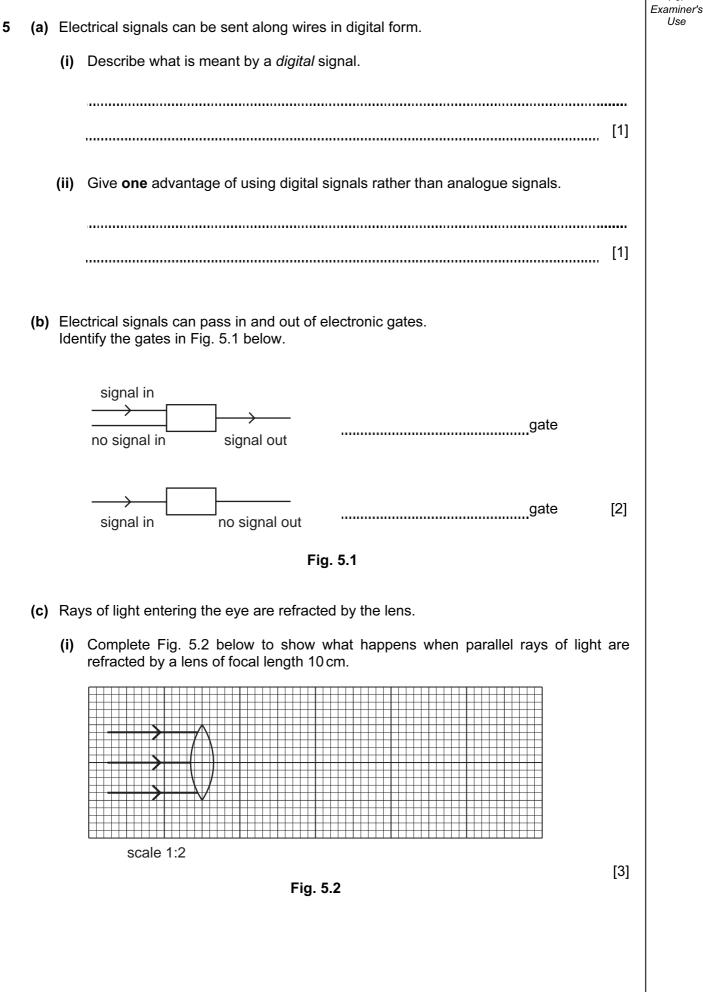
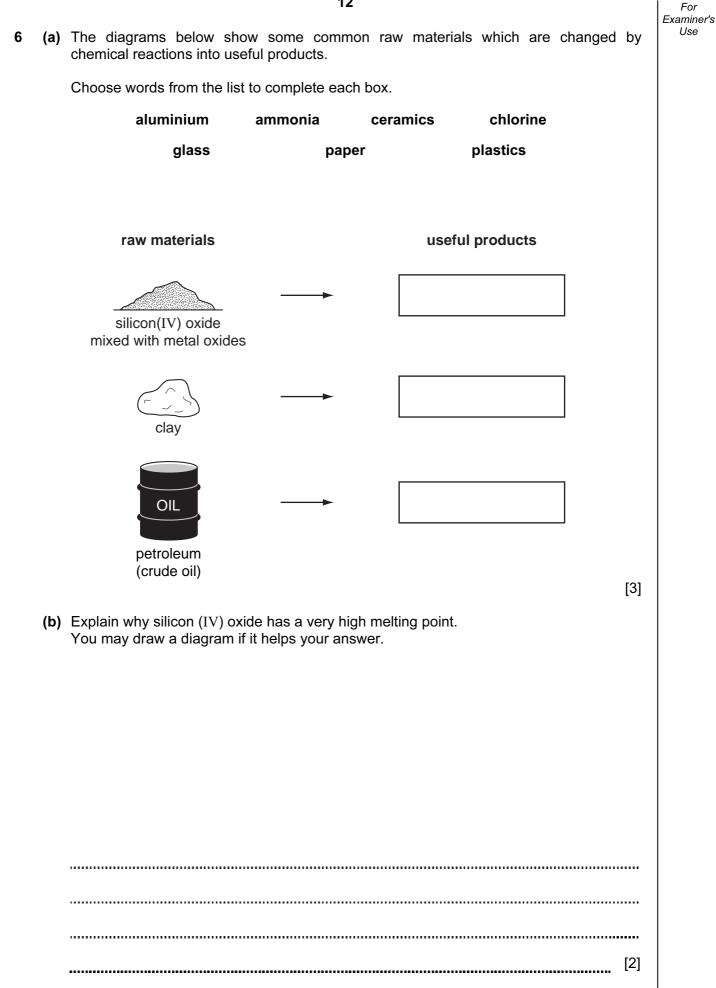



Fig. 4.1

Explain how hunting of big-horn sheep could have caused the general trend shown in Fig. 4.1.

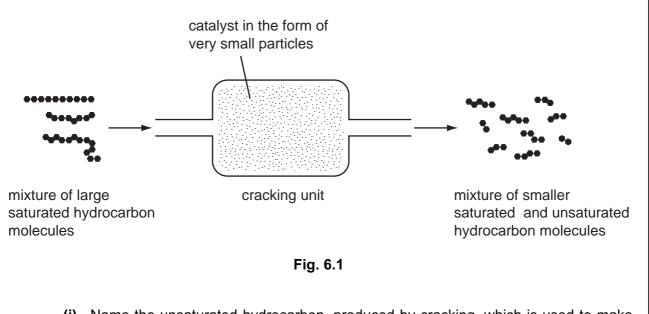
		[4]
(d)	In s	ummer it may be very hot in the mountains, but in winter it is very cold.
	(i)	Explain how the big-horn sheep's sweat glands can help to keep them cool in summer.
		[2]
	(ii)	Explain how vasoconstriction can help to keep the sheep warm in winter.
		[3]


0654/03/M/J/06

For

Use

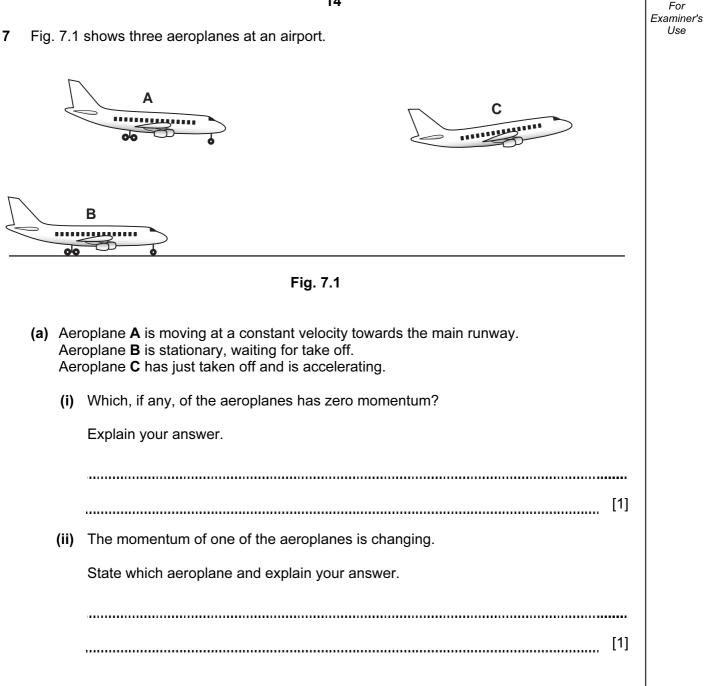
	11	For
(ii)	Human eyes are able to detect the three primary colours. Name these colours.	Examiner's Use
	1	
	2	
	3[1]	
(iii)	These three colours of light are electromagnetic waves. Apart from their colour, state one other way in which they differ from each other.	

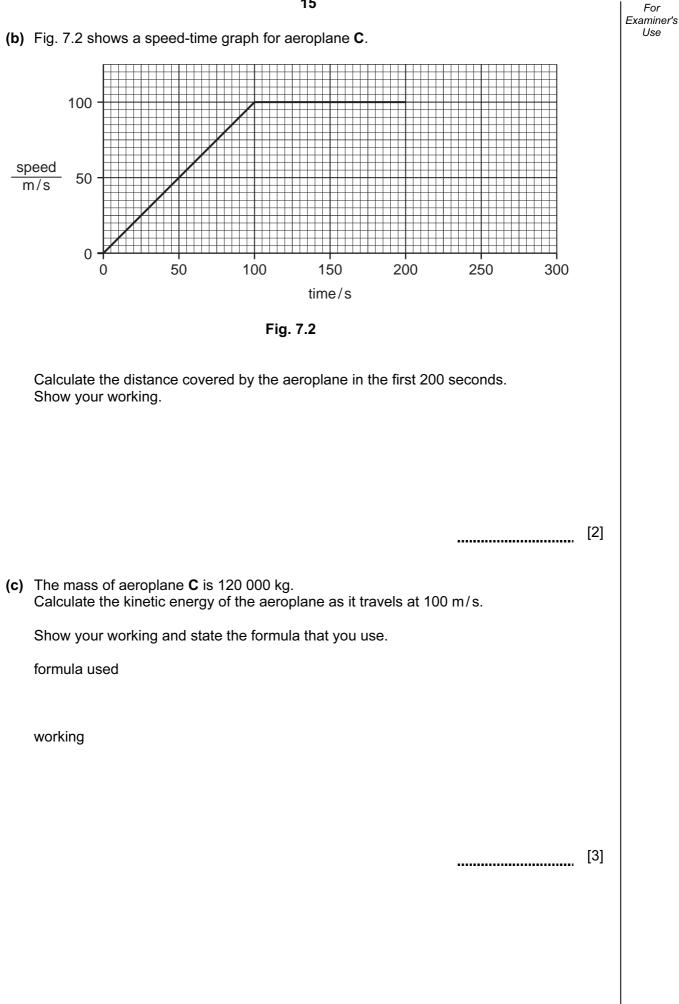

 [1]

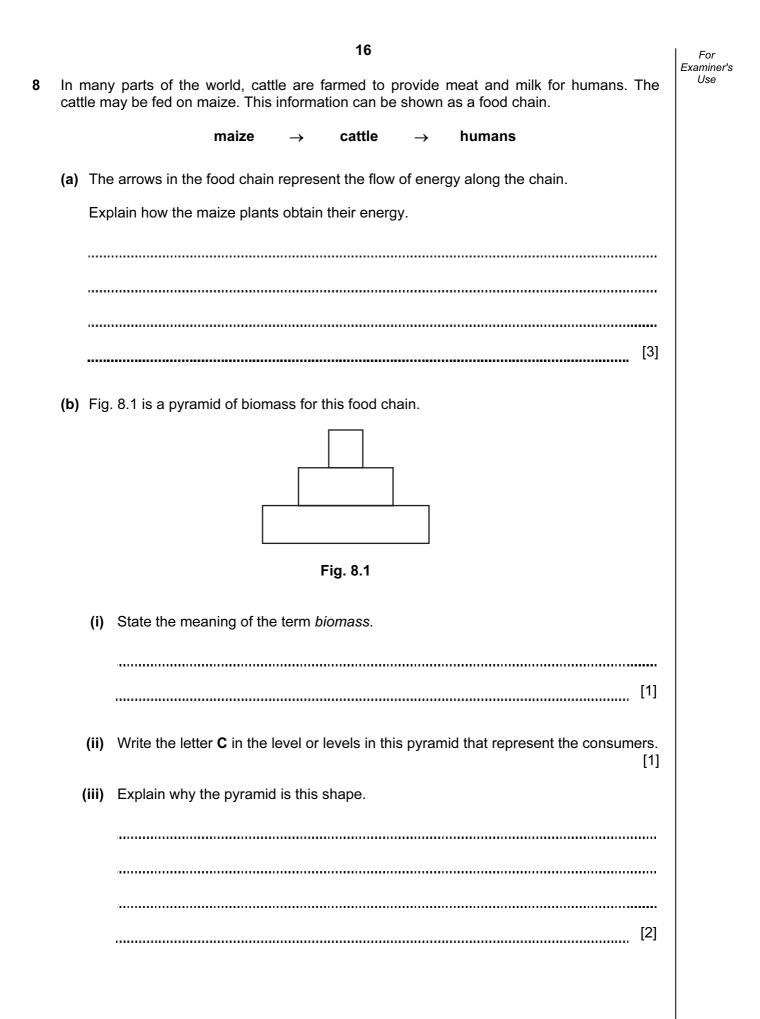
(c) Petroleum (crude oil) undergoes many processes in order to provide a wide range of useful chemicals.

Some of the alkane molecules from petroleum are cracked on the surface of a hot catalyst to produce a mixture of saturated and unsaturated hydrocarbons.

Fig. 6.1 shows a schematic diagram of catalytic cracking.


- (i) Name the unsaturated hydrocarbon, produced by cracking, which is used to make ethanol, C₂H₆O.[1]
- (ii) Write a balanced equation for the reaction referred to in (i) that produces ethanol.


(iii) Describe how a sample of the mixture coming from the cracking unit could be tested to show that it contained unsaturated compounds.


[2]

(iv) The mixture coming from the cracking unit contains molecules of different sizes. Suggest the name of a process which could be used to separate the mixture into individual substances.

[1]

(c) Explain why farmers may spray pesticides onto growing maize crops.

[2]

(d) There is more than enough food in the world to feed everyone, but in many places people cannot get enough to eat.

Describe **one** example of a problem of inadequate diet in a named part of the world and suggest a solution to this problem.

[3]

- **9** Growing crops take up several elements they need from the soil. The chemical symbols of three of these elements are N, P and K.
 - (a) (i) One of these elements, when uncombined, is a metal. Name this element.

[1]

18

(ii) State which two of these elements have the same number of electrons in the outer shells of their atoms. Explain your answer briefly.

elements	and	
explanation		
		 [2]

(b) In industry, nitrogen from the atmosphere is used to make ammonia. Ammonia is used to make the salts ammonium nitrate and ammonium phosphate, which are added to soil used for growing crops.

Fig. 9.1 shows a diagram of the industrial process used to make ammonia.

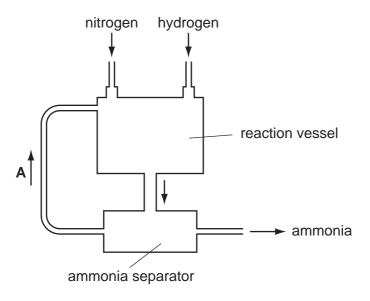
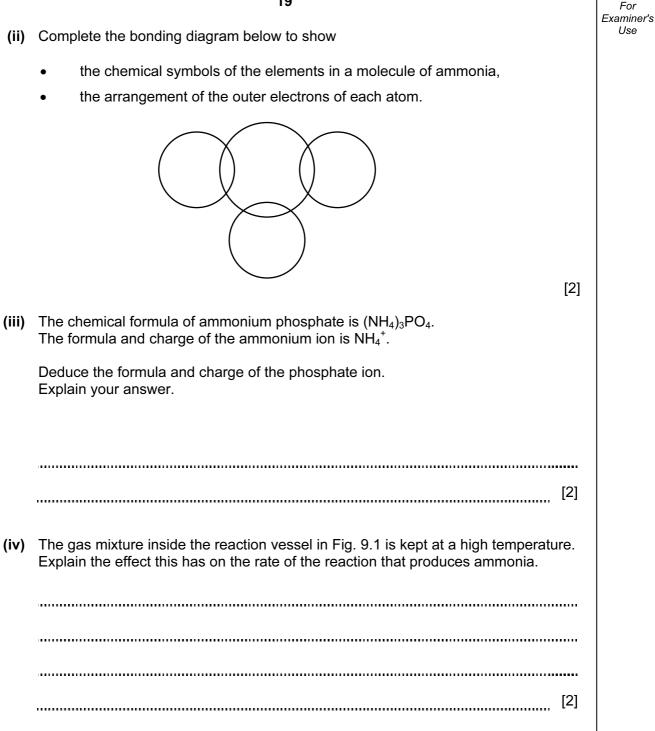


Fig. 9.1


(i) The equation for the formation of ammonia is shown below.

 $N_2(g) + 3H_2(g) \implies 2NH_3(g)$

Name the two main gases in the mixture flowing through pipe A.

_____and _____[1]

0654/03/M/J/06

For Examiner's Use

10	(a)	Explain why the pressure inside a car tyre increases as the tyre gets hotter.
		[2]
	(b)	Explain why snow skis have a large surface area.
		[2]
	(c)	Explain why an earthquake taking place inside the Earth can be detected on the surface.
		[2]

BLANK PAGE

21

www.theallpapers.com

BLANK PAGE

BLANK PAGE

23

Copyright Acknowledgements:

Question 4 © William Ervin/Science Photo Library

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET The Periodic Table of the Elements

							Grc	Group								
=											≡	2	>	N	NII V	0
						¹ Hydrogen										⁴ Helium
9 Be Beryllium					J						5 Boron 3	12 Carbon 6	14 Nitrogen 7	16 Oxygen 8	19 Fluorine	20 Neon Neon
24 Mg Magnesium 12											27 A 1 Aluminium 13	28 Si Silicon	31 Phosphorus 15	32 S Sulphur 16	35.5 C 1 Chlorine	40 Ar Argon
40 Ca Calcium	45 SC Scandium 21	48 Titanium 22	51 Vanadium 23	52 Cr Chromium 24	55 Man ganese 25	56 Iron 26	59 CO Cobait	59 Nickel	64 Copper 29	65 Zn ^{Zinc}	70 Ga Gallium 31	73 Ge Germanium 32	75 AS Arsenic 33	79 Se Selenium 34	80 Br Bromine 35	84 Krypton 36
88 Sr Strontium 38	89 Yttrium 39	91 Zr 40	93 Niobium 41	96 Mo Molybdenum 42	Tc Technetium 43	101 Rut Ruthenium 44	103 Rh odium 45	106 Pd Palladium 46	108 Ag Silver	112 Cadmium 48	115 In Indium	119 Sn	122 Sb Antimony 51	128 Te Tellunium 52	127 I lodine 53	131 Xe Xenon 54
137 Ba Barium	139 La Lanthanum 57	178 Hafnium * 72	181 Ta Tantalum 73	184 V Tungsten 74	186 Re Rhenium 75	190 OS Osmium 76	192 Ir Iridium	195 Pt Platinum 78	197 Au Gold 79	201 Hg ^{Mercury} 80	204 T1 Thallium 81	207 Pb Lead 82	209 Bi Bismuth	PO Polonium 84	At Astatine 85	Rn Radon 86
226 Rad ium	227 Actinium 89	E	-							-						
noic id s	*58-71 Lanthanoid series 90-103 Actinoid series	Ø	140 Ce ^{Cerium}	141 Pr Praseodymium 59	144 Neodymium 60	Promethium 61	150 Sm samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb ^{Terbium} 65	162 Dy Dysprosium 66	165 Holmium 67	167 Er Erbium 68	169 Tm Thuium 69	173 Yb Ytterbium 70	175 Lu Lutetium 71
ف × م	a = relative atomic X = atomic symbol b = proton (atomic)	a = relative atomic mass X = atomic symbol b = proton (atomic) number	232 Thorium 90	Pa Protactinium 91	238 Uranium 92	Neptunium 93	Putonium 94	Americium 95	66 Curium	BK Berkelium 97	Cf Californium 98	ES Einsteinium 99	Fermium 100		Nobelium 102	Lr Lawrencium 103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

24