

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

	CANDIDATE NAME		
	CENTRE NUMBER		CANDIDATE NUMBER
* 🚃			
1	COMBINED SC	IENCE	0653/31
2	Paper 3 (Extend	led)	October/November 2013
6 2		, ,	1 hour 15 minutes
5 5	Candidates ans	wer on the Question Paper.	
1 5 6	No Additional M	aterials are required.	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units. A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 22 printed pages and 2 blank pages.

1 Sodium chloride is obtained from underground deposits in the Earth's crust.

Low-sodium salt is a mixture containing both sodium chloride and potassium chloride.

(a) (i) Explain why the Earth's crust contains the compound sodium chloride and not the uncombined elements, sodium and chlorine.

(ii) State one difference between a compound, such as potassium chloride, and a mixture, such as low-sodium salt.
 [2]

(b) Table 1.1 contains the names and symbols of some positive and negative ions.

Table 1.1

positive i	ons
name	symbol
potassium	K⁺
ammonium	${\sf NH_4}^+$
calcium	Ca ²⁺
aluminium	A <i>l</i> ³⁺

negative i	ons
name	symbol
fluoride	F
oxide	O ²⁻
nitride	N ³⁻
sulfate	SO4 ²⁻

(i) Use the information shown in Table 1.1 and the Periodic Table on page 24 to determine the ions that have an electron configuration of 2, 8, 8.

[1]

	(ii)	Deduce the chemical formula of the compound calcium fluoride. Show how you obtained your answer.	For Examiner's Use
(c)	The	[2] e element calcium is formed during the electrolysis of molten calcium chloride.	
	cath	node.	
	(1)	[2]	
	(ii)	Describe what happens at the surface of the cathode to convert calcium ions to calcium atoms.	
		[2]	

2 Fig. 2.1 shows the inside of a refrigerator.

The temperature inside the freezing compartment is -20 $^{\circ}$ C and the temperature in the rest of the refrigerator is +5 $^{\circ}$ C.

(a) (i) The air in the refrigerator is cooled by convection.

Draw **one** arrow on Fig. 2.1 to show the movement of the air cooled by the freezing compartment. [1]

(ii) Explain this movement in terms of particles and density.

[2]

(b) The volume of air in the refrigerator is $0.15 \, \text{m}^3$.

The density of air is $1.26 \text{ kg}/\text{m}^3$.

Calculate the mass of air in the refrigerator.

State the formula that you use, show your working and state the unit of your answer.

formula

working

unit [2]

For Examiner's Use (c) (i) Complete the diagrams to show the arrangement of water molecules in solid ice and in liquid water. One molecule has been drawn for you in each box. Each Examiner's diagram should contain at least twelve water molecules.

[2]

For

Use

(ii) Each sentence describes either a solid, a liquid or a gas.

In the right hand column write the letter S for solid, L for liquid or G for gas to match the description.

description	S, L or G
It cannot flow.	
It cannot transfer heat by convection.	
It contains particles which are widely separated.	
It expands the most when heated.	
It fills a closed container.	
It has a fixed volume but not a fixed shape.	

[2]

(d) A refrigerator can be warmed up by radiation energy absorbed by the outside surface of the refrigerator. Such absorption needs to be kept as low as possible.

The four refrigerators shown in Fig. 2.2 are identical except for the outside surface.

В Α Chillor Chillor black, shiny surface black, dull surface С D Chillor Chillor white, dull surface white, shiny surface Fig. 2.2 State which refrigerator is most effective at keeping the contents cool. Explain your answer.

0653/31/O/N/13

For

Examiner's Use

Please turn over for Question 3.

3 The concentration of glucose in the blood does not normally vary much.

Researchers investigated how adding fibre to foods affected the concentration of glucose in the blood after eating.

Fig. 3.1 shows the results that they obtained for two different types of cornflakes. Cornflakes contain a lot of starch.

Fig. 3.1

Use the information in Fig. 3.1 to help you to answer the following questions.

(a) Describe how the blood glucose concentration changed after eating cornflakes with no added fibre.

[3]

8

For Examiner's Use

(b)	Sug	ggest explanations for these changes in blood glucose concentration.	For Examiner's Use
	•••••	[3]	
(c)	(i)	Describe how adding fibre to the cornflakes affected the changes in blood glucose concentration after eating.	
		[3]	
	(ii)	Outline one other way in which fibre in the diet affects health.	
		[1]	

4 Fig. 4.1 shows the nucleus and **outer** electron shell of an atom of an element from the **third** period of the Periodic Table .

10

For Examiner's Use

(a) Deduce the name of the element and explain your answer briefly.

name of element	
explanation	
	[2]

(b) Fig. 4.2 shows the melting points of four metallic elements from the same group of the Periodic Table.

For Examiner's Use

Fig. 4.2

(i) State the number of the group that contains the elements whose melting points are shown in Fig. 4.2.

Explain your answer briefly.

group number ______ explanation ______[2]

(ii) Estimate the melting point of the next element in the same group of the Periodic Table.

Use the symbol **X** to mark your estimate on the grid in Fig. 4.2. [2]

- including iron oxide and coke (carbon) hot gases molten iron moving down to the base gas A rising to react with iron oxide hot air impurities iron Fig. 4.3 (i) Name gas A which reacts with iron oxide to produce iron.[1] (ii) Name the type of chemical change that the iron oxide undergoes in (i). Explain your answer briefly. type of chemical reaction explanation [2] (iii) State the word chemical equation for the reaction that occurs in (i).[1]
- (c) Fig. 4.3 shows a cross section through a blast furnace which is used to extract iron from iron oxide.

raw materials

For Examiner's Use

Please turn over for Question 5.

5 Fig. 5.1 shows a solar-powered vehicle.

(a) Fig. 5.2 shows a speed/time graph for the vehicle for the first hour of a journey.

(i) Calculate the distance travelled during 4000 s.

Show your working and state the unit of your answer.

unit [2]

6 Fig. 6.1 shows an external view of the heart and the blood vessels that are connected to it.

Fig. 6.1

- (a) The muscles in the walls of the ventricles contract and relax rhythmically.
 - (i) Describe how contraction of the muscles in the wall of the left ventricle affects the blood inside the ventricle.

[2]
(ii) Describe how contraction of the muscles in the wall of the left ventricle affects the valve between the left atrium and the left ventricle.
[1]
(b) The coronary arteries supply the muscles of the heart with oxygen and nutrients.
(i) Explain why these muscles require a constant supply of oxygen.
[2]

16

For Examiner's Use

(ii)	A blockage occurs in the coronary artery at site B .	For Examiner's
	On Fig. 6.1, shade the area of the heart wall that will be affected by this blockage. [1]	Use
(iii)	List three lifestyle factors that increase the chance that a blockage will develop in a coronary artery.	
	1	
	2	
	3 [3]	

- 7 Ethene, C_2H_4 , is an unsaturated hydrocarbon.
 - (a) Fig. 7.1 shows structures of the molecules involved when ethene reacts with bromine.

(i) Describe the colour change that is observed when ethene reacts with bromine.

from ______ to _____[1]

(ii) Name the type of chemical reaction shown in Fig. 7.1.

[1]

(iii) The reaction between ethene and hydrogen chloride, HCl(g), is similar to the reaction shown in Fig. 7.1.

Complete the equation below to suggest the structure of the molecule that is produced.

[2]

For Examiner's Use

(b) Methane, CH₄, reacts with steam in the presence of a catalyst to produce carbon monoxide, CO, and hydrogen gas.

Construct a balanced symbol chemical equation for this reaction.

[3]

8 (a) Fig. 8.1 shows a circuit which could be used for the lights on a car. When each headlight bulb is fully lit, 6 A passes through it. When each sidelight is fully lit, 0.5 A passes through it.

For Examiner's Use

[Turn over www.theallpapers.com

9 (a) Fig. 9.1 shows a plant cell. For Examiner's Use chloroplast starch grain cellulose cell wall vacuole membrane nucleus cell membrane large permanent vacuole cytoplasm Fig. 9.1 (i) Name the tissue in the leaf in which this type of cell is found. [1] (ii) Explain how this cell is adapted to carry out photosynthesis. [3] (b) About one tenth of the Earth's surface is covered by forests in which much photosynthesis takes place. Explain how extensive deforestation could lead to an increase in the rate of global warming. [3]

	gamma rays	X-rays	ultraviolet	visible light	infra red	microwaves	radio waves
			I	Fig. 10.1			
	Name the	type of elec	ctromagnetic v	vave that is	used		
	(i) to se	nd a signal t	o a TV from a	remote con	trol,		
							[
	(ii) to se	nd satellite T	V information	I.			
							[
	State the	speed at wh	iich X-rays tra	vel			
(c)	State the Fig. 10.2	speed at wh represents a	iich X-rays tra a wave. 3	vel			
(c)	State the Fig. 10.2	speed at wh	nich X-rays tra a wave. 30	vel.			[
(c)	State the Fig. 10.2	speed at wh	nich X-rays tra	vel			[
(c)	State the Fig. 10.2	speed at wh represents a hetres 10.2 to find t	he	vel			[
(c)	State the Fig. 10.2	speed at wh represents a hetres 10.2 to find t th of the way	he ve,	vel			[

www.theallpapers.com

For Examiner's Use

BLANK PAGE

BLANK PAGE

	III IV V VI VII 0	4	He	Hellum 2	11 12 14 16 19 20	B C N O	soron Carbon Nitrogen Oxygen Fluorine Neon 6 7 8 9 9	27 28 31 32 35.5 40	Al Si P S Cl Ar	minium Silicon Phosphorus Sultur Chlorine Argon 14 15 16 16 17 18	70 73 75 79 80 84	Ga Ge As Se Br Kr	allum Germanium Arsenic Selenium Biomine Krypton 32 33 34 35 36	115 119 122 128 127 131	In Sn Sb Te I Xe	odum Tin Antimony Tellurium lodine Xenon 50 51 52 53 54	204 207 209	T <i>l</i> Pb Bi Po At Rn	alium Lead Bismuth Polonium Astatine Radon 82 83 84 85 86 86				162 167 169 173 175	Dy Ho Er Tm Yb Lu	prosium Holmium Erbium Thulium Ytterbium Lutetium 67 68 69 70 71		Cf Es Fm Md No Lr	_
-	=	_			11	8	5 Borc	27	A	Alumir 13	55 70	ü u	inc Galliu 31	12 115	cd Ir	Imium Indiu 49	01 20	Hg T	rcury Thalli 81				59 162	م م	bium Dyspro		S SK	
											64	Cu	Copper 30	108	Ag	Silver Cao	197 2	Au	Gold Re 80				157 1	C Cd	Sadolinium Ter		E C W	
dh											59	ïZ	Nickel 29	106	Pd	Palladium 47	195	£	Platinum 79 79				152	Eu	Europium (62		Am	-
5					_						59	ပိ	Cobalt 27	103	Rh	Rhodium 45	192	<u>-</u>	Iridium 77				150	Sm	Samarium 62		Pu	-
		~		Hydrogen 1							56	Fe	Iron 26	101	Ru	Ruthenium 44	190	os	Osmium 76					Pm	Promethium 61		dN	-
											55	Mn	Manganese 25		Ч	Technetium 43	186	Re	Rhenium 75				144	Nd	Neodymium 60	238	0	
											52	ບັ	Chromium 24	96	Mo	Molybdenum 42	184	≥	Tungsten 74				141	ሻ	Praseodymium 59		Ра	
											51	>	Vanadium 23	93	qN	Niobium 41	181	Та	Tantalum 73				140	မီ	Cerium 58	232	Ч	_
											48	F	Titanium 22	91	Zr	Zirconium 40	178	Ŧ	+ Hafnium 72				1			mic mass	lodr	
-		-									45	Sc	Scandium 21	89	≻	Yttrium 39	139	La	Lanthanum 57 *	227	Ac	Actinium 89	d series	ia ocinco	Selles	<pre>i = relative ato.</pre>	A = atomic syn A	
-	=				6	Be	Beryllium 4	24	Mg	Magnesium 12	40	Ca	Calcium 20	88	Sr	Strontium 38	137	Ba	Barium 56	226	Ra	Radium 88	anthanoi			w w	×	
	_				7	:-	Lithium	23	Na	Sodium 1	39	¥	Potassium 9	85	Rb	Rubidium 7	133	Cs	Caesium 5	1	Ļ	Francium 7	8-71		20-102		ey	,

24

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

www.theallpapers.com