

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

COMPINED SO	CIENCE		0652/24
CENTRE NUMBER		CANDIDATE NUMBER	
CANDIDATE NAME			

COMBINED SCIENCE

0653/21

Paper 2 (Core)

October/November 2013

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 23 printed pages and 1 blank page.

	chloride is obtained from underground deposits in the Earth's crust or from as such as sea water.
(a) (i)	Explain why the Earth's crust contains the compound sodium chloride and not the uncombined elements, sodium and chlorine.
	[1]
(ii)	State one difference between a compound and an element.
	[1]
(iii)	Describe how crystals of sodium chloride could be obtained from a salt solution.
	[2]
(b) The	e chemical formula of the compound calcium fluoride is CaF ₂ .
Ex	plain the meaning of the numbers in this formula.
	[1]

1

(c) Fig. 1.1 shows apparatus used to separate the element lead from the compound lead bromide.

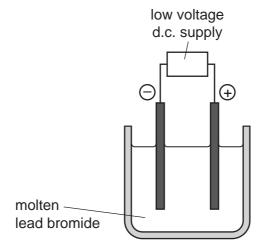


Fig. 1.1

(i)	Name the process shown in Fig. 1.1.
	[1
(ii)	Explain why an orange-coloured gas is observed rising from the molten lead bromide during the process.
	[2

2 Fig. 2.1 shows the inside of a refrigerator.

For Examiner's Use

The temperature inside the freezing compartment is -20 $^{\circ}$ C and the temperature in the rest of the refrigerator is +5 $^{\circ}$ C.

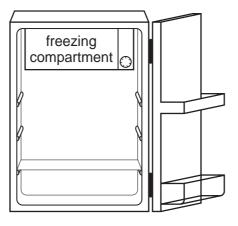


Fig. 2.1

(a) The air in the refrigerator is cooled by convection.

Draw **one** arrow on Fig. 2.1 to show the movement of the air cooled by the freezing compartment. [1]

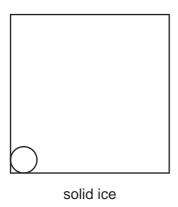
(b) The volume of air in the refrigerator is 0.15 m³.

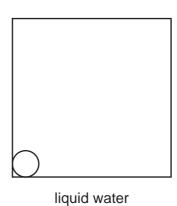
The density of air is 1.26 kg/m³.

Calculate the mass of air in the refrigerator.

State the formula that you use and show your working.

formula


working


kg [2]

(c) (i) Complete the diagrams to show the arrangement of water molecules in solid ice and in liquid water.

For Examiner's Use

One molecule has been drawn for you in each box. Each diagram should contain at least twelve water molecules.

[2]

(ii) Each sentence describes either a solid, a liquid or a gas.

In the right hand column write the letter ${\bf S}$ for solid, ${\bf L}$ for liquid or ${\bf G}$ for gas to match the description.

description	S, L or G
It cannot flow.	
It cannot transfer heat by convection.	
It contains particles which are widely separated.	
It expands the most when heated.	
It fills a closed container.	
It has a fixed volume but not a fixed shape.	

[2]

3 The concentration of glucose in the blood does not normally vary much. The hormone adrenaline causes blood glucose concentration to increase.

For
Examiner's
1100

(a) (i) Define the term hormone.

	 [2]

(ii) State **one** effect of adrenaline on the body, other than increasing the concentration of glucose in the blood.

[1]

(b) Researchers investigated how adding fibre to foods affected the concentration of glucose in the blood after eating.

Fig. 3.1 shows the results that they obtained for two different types of cornflakes. Cornflakes contain a lot of starch.

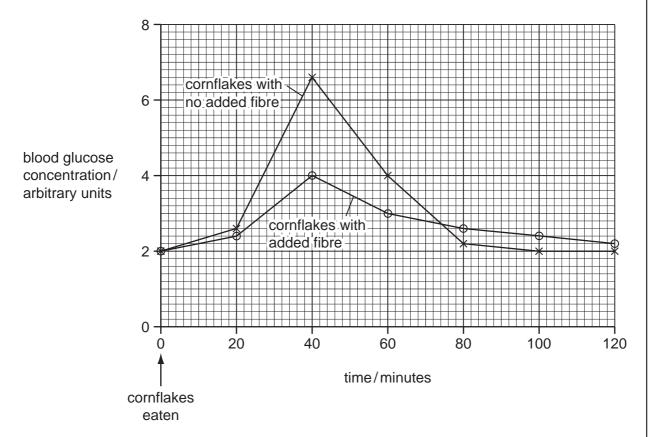


Fig. 3.1

Use the information in Fig. 3.1 to help you to answer the following questions.

(i) Describe how the blood glucose concentration changed after eating cornflakes with no added fibre.

[3]

(ii) Describe how adding fibre to the cornflakes affected the changes in blood glucose concentration after eating.

[3]

(c) Outline one other way in which fibre in the diet affects health.

4 Fig. 4.1 shows a period in the Periodic Table. Four elements are represented by letters which are not their usual chemical symbols.

For Examiner's Use

group number	1	2	3	4	5	6	7	0
namber	W	X					Y	Z

Fig. 4.1

(a)	(i)	State and explain which of the elements, chosen from W, X, Y and Z, are po	or
		conductors of electricity.	

element(s)
explanation
[2]
One of the elements shown in Fig. 4.1 is not expected to form a compound with any of the others.
State and explain which one of the elements this is.
element
explanation

(ii)

(b) Fig. 4.2 shows the melting points of four metallic elements from the same group of the Periodic Table.

For Examiner's Use

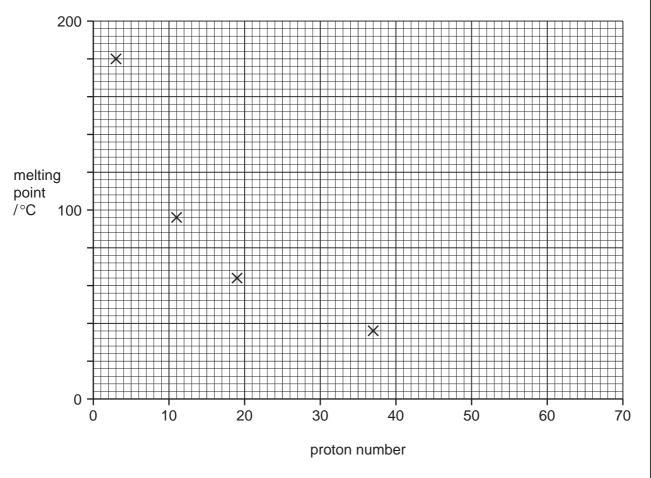


Fig. 4.2

(i)	State the number of the group that contains the elements whose melting points are
	shown in Fig. 4.2.

Explain your answer briefly.

group number

explanation

[2]

(ii) Use the Periodic Table on page 24 to name the element in Fig. 4.2 that has the lowest melting point.

[1

(c) (i)	Copper oxide	is a bla	ick solid whicl	h is insoluble	in water.		
	A student add mixture.	ded exc	ess dilute sul	furic acid to s	some copper o	xide ar	nd warmed the
	The copper o	xide dis	appeared and	d a clear blue	solution remai	ned.	
	State one ob	servatio	n which show	s that a cher	nical change h	as occi	urred.
							[1]
(ii)	Complete the dilute sulfuric		chemical equ	ation for the	reaction betwe	en cop	oper oxide and
	copper oxide	+	sulfuric acid			+	
				-		•	[2]

Please turn over for Question 5.

5 Fig. 5.1 shows a solar-powered vehicle which travelled 3000 km in 30 hours.

For Examiner's Use

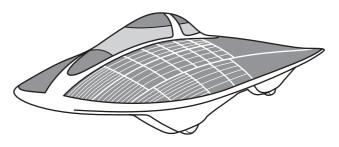


Fig. 5.1

(a) Calculate the average speed of the vehicle in km/hr.

State any formula that you use and show your working.

formula

working

km/hr [2]

(b) Fig. 5.2 shows a speed/time graph for part of the journey.

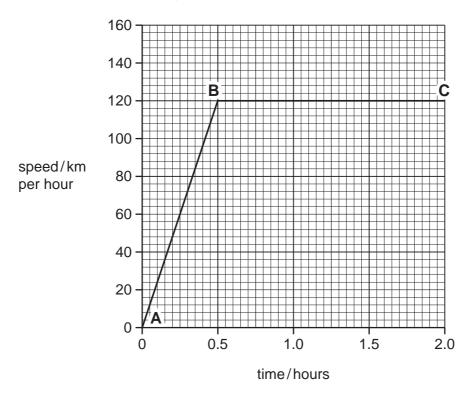


Fig. 5.2

	(i)	What was the maximum speed of the vehicle?
		km/hr [1]
	(ii)	Describe the movement of the vehicle between A and B .
	` '	[1]
(c)	Fig.	5.3 shows the energy flow diagram for the solar-powered vehicle.
	sola	
		Fig. 5.3
	Dur	ring part of the journey, the solar cell receives 1 000 000 joules of solar energy.
	Cal	culate the number of joules transferred as kinetic energy to the vehicle .
	Sho	ow your working.
		J [2]
(d)	Sol	ar energy is a renewable energy source.
	(i)	Name one other renewable energy source.
		[1]
	(ii)	Describe one advantage to the environment of using solar energy as a renewable energy source.
		[1]

6 Fig. 6.1 shows a section through the heart.

For Examiner's Use

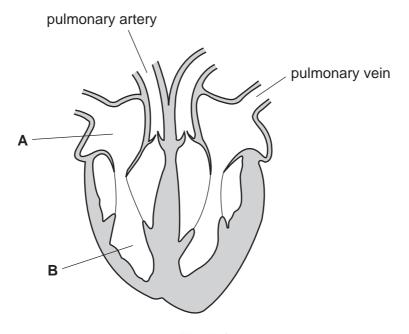


Fig. 6.1

(a)	Name the parts labelled A and B .	
	A	
		[2]
(b)	The walls of the heart are made of muscle.	
	Explain how this muscle pushes blood out of the heart.	
		[2]
(c)	Suggest why the muscle of the upper chambers of the heart is thinner than the mus of the lower chambers of the heart.	cle
		[2]

(d)	When the heart is beating more quickly than usual, it uses a lot of oxygen.
	Suggest why the heart uses more oxygen when it is beating quickly.
	[2]

7	(a) (i	Name a raw material that provides us with hydrocarbons.	For Examiner's
		[1]	Use
	(ii	Explain the meaning of the term <i>hydrocarbon</i> .	
		[1]	

(iii) Fig. 7.1 shows the chemical equation for the reaction between ethene and bromine, set out as molecular structures.

Fig. 7.1

Rewrite the information in Fig. 7.1 using chemical formulae. One chemical formula has been given.

[2]

(b) Propane is a gaseous hydrocarbon used as a fuel.

For Examiner's Use

Fig. 7.2 shows a cross-section through a small furnace (kiln) in which items of pottery are being heated by a propane burner. The temperature inside the kiln is 950 °C.

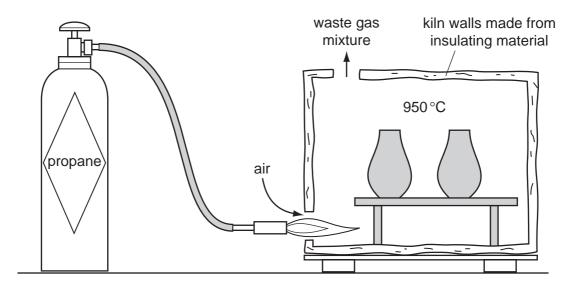


Fig. 7.2

(i)	State which information from Fig. 7.2 shows that the combustion of propane is exothermic.
	Explain your answer.
	[2]
(ii)	Suggest two compounds that have a higher concentration in the waste gas mixture than in the air drawn in at the bottom of the kiln.
	Explain your answer briefly.
	1
	2
	explanation
	[3]

8 (a) Complete Table 8.1 below by drawing the circuit symbol for each electrical component.

For Examiner's Use

Table 8.1

name of component	circuit symbol				
open switch					
resistor					
voltmeter					
fuse					

[2]

(b) Fig. 8.1 shows an electrical hazard.

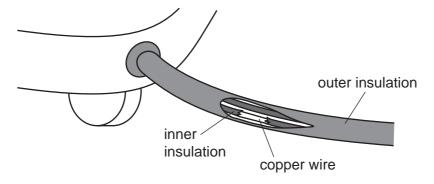


Fig. 8.1

State the hazard.	
Explain why this situation is dangerous.	

[2]

(c) In the circuit shown in Fig. 8.2 the reading on ammeter A_3 is 0.5 A.

For Examiner's Use

(i) State the current readings on ammeters A_1 and A_2 .

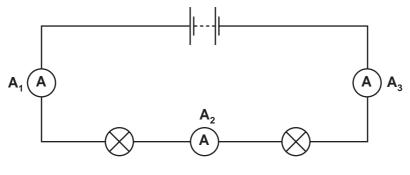


Fig. 8.2

A_1	 A		
A_2	Α	[1]

(ii) Each lamp in the circuit has a resistance of 5Ω .

Calculate the combined resistance of the two lamps in the circuit.

State the formula that you use and show your working.

formula

working

Ω [2]

9 (a) Fig. 9.1 shows a plant cell.

For Examiner's Use

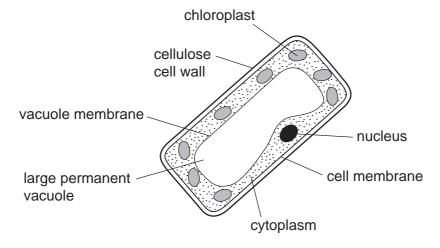


Fig. 9.1

(i)	Describe the function of the cell membrane.	
		[1]
(ii)	Name two structures labelled on Fig. 9.1 that are not found in animal cells.	
	1	
	2	[2]
(iii)	Describe how photosynthesis is carried out in the cell shown in Fig. 9.1.	
		[3]

',	photosynthesis takes place.
	List three ways in which extensive deforestation could harm the environment.
	1
	2
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	3
	[3]

10 (a) Fig. 10.1 represents the electromagnetic spectrum.

For Examiner's Use

	mma ays	X-rays	ultraviolet	visible light	infra red	microwaves	radio waves
--	------------	--------	-------------	------------------	--------------	------------	----------------

Fig. 10.1

Name the type of electromagnetic wave that is used

(i) to send a signal to a TV from a remote control,

[1]

(ii) to send satellite TV information.

______[1]

(b) Fig. 10.2 represents a wave.

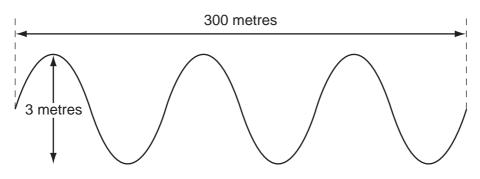


Fig. 10.2

Use Fig. 10.2 to find the

wavelength of the wave,

amplitude of the wave.

_____ m

_____ m

[2]

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	4 He Helium	20 Ne Neon	40 Ar Argon	84 K	Krypton 36	131	Xenon Xenon 54	ı	Rn Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103
	II/		19 F Fluorine	35.5 C1 Chlorine	80 D	Bromine 35	127	lodine 53		At Astatine 85		173 Yb Ytterbium 70	Nobelium
	>		16 Oxygen 8	32 S Sulfur	79 Se	Selenium 34	128	Tellurium 52	1	Po Polonium 84		169 Tm Thulium 69	Mendelevium
	^		14 N Nitrogen 7	31 Phosphorus 15	75 As	Arsenic 33	122	Sb Antimony 51	209	Bi Bismuth 83		167 Er Erbium 68	Fm Fermium 100
	2		12 C Carbon 6	28 Si Silicon		Germanium 32		So III	207	Pb Lead 82		165 Ho Holmium 67	ES Einsteinium 99
	=		11 B Boron 5	27 A1 Aluminium 13	70 Ga	Gallium 31	115	Indium	204	T t Thallium 81		162 Dy Dysprosium 66	Cf Californium 98
					65 Zn	Zinc 30	112	Cadmium 48	201	Hg Mercury 80		159 Tb Terbium 65	Bk Berkelium 97
					°54	Copper 29	108	Ag Silver 47		Au Gold 79		157 Gd Gadolinium 64	Cm Curium 96
Group					²⁸	Nickel 28	106	Palladium 46	195	Pt Platinum 78		152 Eu Europium 63	Am Americium 95
Ģ					°29	Cobalt 27	103	Khodium 45	192	lridium 77		Samarium 62	Pu Plutonium 94
		T Hydrogen			56 Fe	Iron 26	101	Ku Ruthenium 44	190	Osmium 76		Pm Promethium 61	Neptunium 93
					SS Mn	Manganese 25	ı	Technetium 43	186	Re Rhenium 75		144 Nd um Neodymium 60	238 U Uranium
					ن و	Chromium 24	96	Molybdenum 42	184	Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91
					5 >	Vanadium 23	63	Niobium 41	181	Ta Tantalum 73		140 Ce Cerium 58	232 Th Thorium
					⁴⁸	Titanium 22	91	Zirconium 40	178	Hatnium 72		ı	a = relative atomic mass X = atomic symbol b = proton (atomic) number
					Sc 55	Scandium 21	88	Yttrium 39	139	Lanthanum 57	Ac Actinium 89	d series series	a = relative atomic mass X = atomic symbol b = proton (atomic) numb
	=		9 Be Beryllium	24 Magnesium 12	6 Ca	Calcium 20	88 (Strontium 38	137	Ba Barium 56	226 Rad ium Radium	*58-71 Lanthanoid series 190-103 Actinoid series	æ ×
	-		7 Lithium 3	23 Na Sodium	® ¥	Potassium 19	85	Rubidium 37	133	Caesium 55	Fr Francium 87	*58-71 L	Key

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).