

## UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

|            | CANDIDATE<br>NAME |                            |                       |
|------------|-------------------|----------------------------|-----------------------|
|            | CENTRE<br>NUMBER  |                            | CANDIDATE<br>NUMBER   |
| *          |                   |                            | 0050/04               |
| ∞ <b>■</b> | COMBINED SC       | IENCE                      | 0653/31               |
|            | Paper 3 (Extend   | led)                       | October/November 2012 |
| 677        |                   |                            | 1 hour 15 minutes     |
| 7          | Candidates ans    | wer on the Question Paper. |                       |
| 949        | No Additional M   | aterials are required.     |                       |

## **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [ ] at the end of each question or part question.

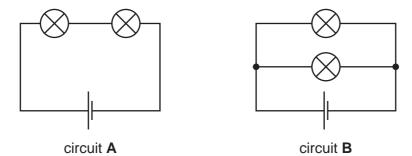
| For Examiner's Use |  |  |
|--------------------|--|--|
| 1                  |  |  |
| 2                  |  |  |
| 3                  |  |  |
| 4                  |  |  |
| 5                  |  |  |
| 6                  |  |  |
| 7                  |  |  |
| 8                  |  |  |
| 9                  |  |  |
| Total              |  |  |

### This document consists of 22 printed pages and 2 blank pages.



**UNIVERSITY** of CAMBRIDGE International Examinations **1** (a) Complete Table 1.1 by choosing one of the words from the list to match each statement.

For Examiner's Use


| ammeter | ampere | circuit   | electron |  |
|---------|--------|-----------|----------|--|
| ohm     | volt   | voltmeter | watt     |  |

#### Table 1.1

| statement                                        | word |
|--------------------------------------------------|------|
| a complete loop of conductors                    |      |
| a particle with a negative electrical charge     |      |
| an instrument that measures potential difference |      |
| the unit of power                                |      |

[2]

(b) Fig. 1.1 shows two circuits, **A** and **B**. All the lamps and both cells are the same.





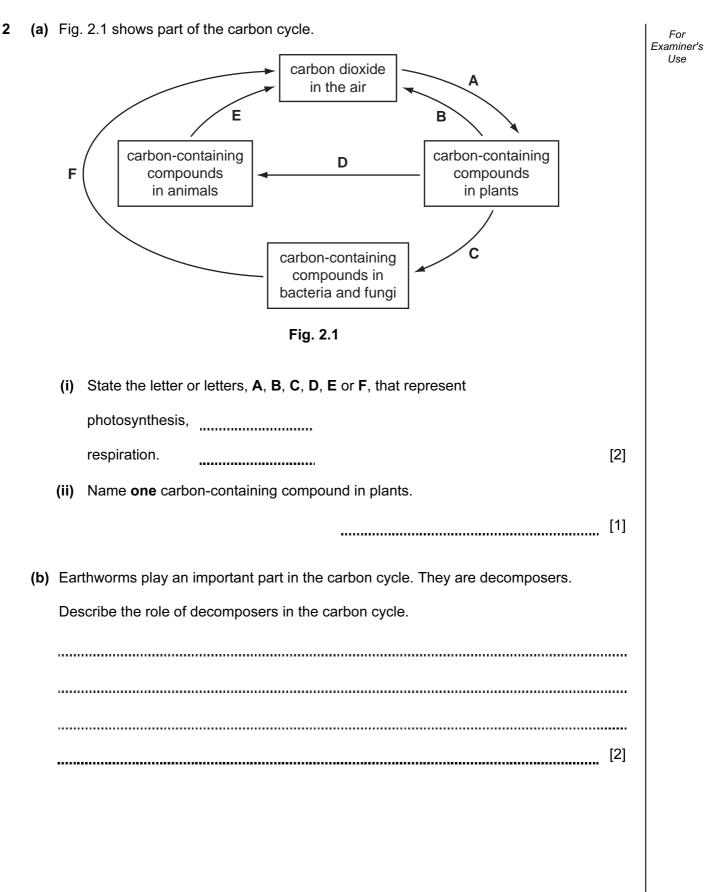
(i) One lamp is unscrewed from circuit A.

State what happens to the other lamp.

Explain your answer.

[1]

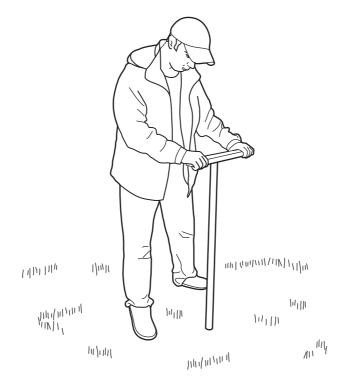
(ii) Explain why lights in a house are connected as in circuit **B** and **not** as in circuit **A**. Examiner's ..... ..... [2] (iii) The resistance of each lamp is  $1.2\Omega$ . Calculate the combined resistance of the two lamps in circuit **B**. State the formula that you use and show your working. formula used working


> [3] .....

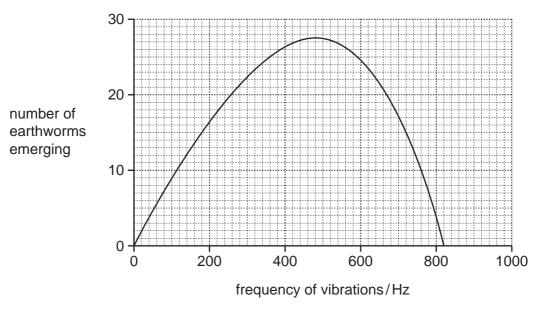
For

Use

# **BLANK PAGE**


4




### [Turn over www.theallpapers.com

A wooden post is pushed into the ground, and then a heavy object is pulled across the top of the post to make it vibrate. The vibrations travel through the soil.

Earthworms respond to the vibrations by crawling out of their burrows onto the soil surface, where they can be caught.



A student investigated the effect of different frequencies of vibrations on the numbers of earthworms that emerged from the soil. Fig. 2.2 shows his results.





6

For Examiner's Use

| (i)  | Describe the effect of different frequencies of vibrations on the numbers of earthworms emerging.                                             | For<br>Examiner's<br>Use |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|      |                                                                                                                                               |                          |
|      |                                                                                                                                               |                          |
|      | [2]                                                                                                                                           |                          |
| (ii) | Moles are predators that live underground and eat earthworms. When moles burrow through the ground, they produce vibrations of around 500 Hz. |                          |
|      | Suggest how the response of earthworms helps them to survive.                                                                                 |                          |
|      |                                                                                                                                               |                          |
|      |                                                                                                                                               |                          |
|      |                                                                                                                                               |                          |
|      | [2]                                                                                                                                           |                          |

(a) Fig. 3.1 shows how a digital pH meter is used to measure the pH of some liquids. 3

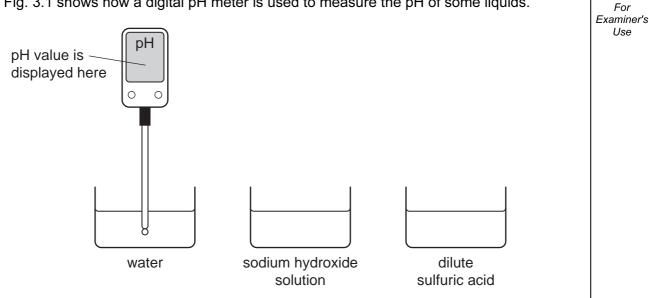



Fig. 3.1

(i) Complete Table 3.1 by suggesting suitable pH values for the different liquids.

| Table 3 | 3.1 |
|---------|-----|
|---------|-----|

| liquid                    | рН |
|---------------------------|----|
| water                     |    |
| sodium hydroxide solution |    |
| dilute sulfuric acid      |    |

[2]

(ii) Suggest one advantage of using a digital pH meter rather than a piece of litmus paper to assess the acidity of an aqueous solution.

..... [1] (iii) Dilute acids are aqueous solutions that contain dissolved ions.

Table 3.2 shows the names of the ions in two common acids.

| le 3.2 |
|--------|
| le 3.2 |

| name of dilute acid | names of dissolved ions         |
|---------------------|---------------------------------|
| hydrochloric acid   | hydrogen ions and chloride ions |
| sulfuric acid       | hydrogen ions and sulfate ions  |

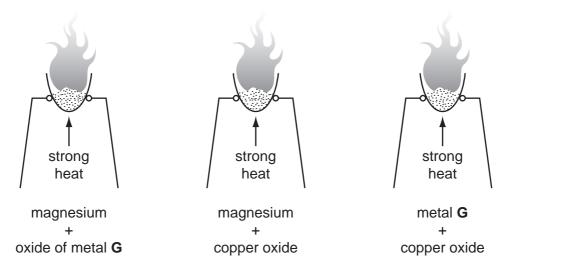
A student is given an unlabelled beaker which is known to contain either dilute hydrochloric acid or dilute sulfuric acid.

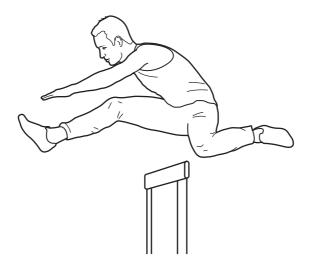
Describe a chemical test that a student could use to find out whether or not the beaker contains hydrochloric acid.

[2]

For Examiner's Use (b) Fig. 3.2 shows three experiments that a teacher set up to compare the reactivities of magnesium, copper and an unknown metal **G**.

In each experiment she heated a mixture of one metal and the oxide of a different metal. In each case there was an exothermic chemical reaction.





Fig. 3.2

(i) Write a **word** chemical equation for the reaction between magnesium and copper oxide.

......[1] (ii) Use the information in Fig. 3.2 to predict whether or not copper would react with the oxide of metal G. Explain your answer. prediction ..... explanation [2]

For

Examiner's Use 4 (a) An athlete of mass 60 kg jumps 1.3 metres vertically.



Calculate the work done by the athlete to achieve this height.

State the formula that you use and show your working. The gravitational field strength of the Earth is 10 N/kg.

formula used

working

[3]

- (b) Using your answer to (a), state the gain in potential energy of the athlete when he jumps 1.3 metres.
  - .....[1]
- (c) The work done in jumping vertically was completed in 0.5 s.

Calculate the power developed.

State the formula that you use and show your working.

formula used

working

[Turn over www.theallpapers.com

.....

[2]

For Examiner's Use 5 Fig. 5.1 shows apparatus that can be used to measure the rate of respiration of germinating seeds. Examiner's

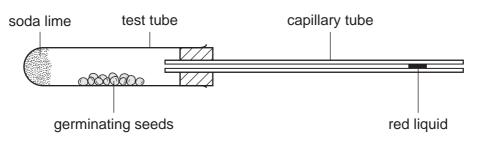



Fig. 5.1

The soda lime absorbs carbon dioxide from the air inside the apparatus.

- (a) As the seeds respire, they use oxygen. This reduces the volume of gas inside the apparatus. The faster they respire, the faster the red liquid moves towards the left.
  - (i) Write the balanced equation for aerobic respiration.

[2] (ii) Use the equation to explain why the liquid would **not** move if there was **no** soda lime in the apparatus. ..... [2] For

Use

For Examiner's Use

Four sets of the apparatus shown in Fig. 5.1 were set up and labelled **A**, **B**, **C** and **D**. Each set of apparatus contained either germinating or dead seeds.

The distance moved by the red liquid in five minutes was measured for each set.

The results are shown in Table 5.1.

| Table 5.1 |  |
|-----------|--|
|-----------|--|

| set | contents          | temperature/°C | distance moved by red<br>liquid in 5 minutes/mm |
|-----|-------------------|----------------|-------------------------------------------------|
| Α   | germinating seeds | 0              | 3                                               |
| В   | germinating seeds | 10             | 6                                               |
| С   | germinating seeds | 20             | 12                                              |
| D   | dead seeds        | 20             | 0                                               |

(i) Explain why it was important to include set **D** in the experiment.

(ii) With reference to Table 5.1, describe the effect of temperature on the rate of respiration of germinating seeds.

 [1]

 (iii) With reference to Table 5.1, describe the effect of temperature on the rate of respiration of germinating seeds.

 [2]

 (iii) Predict and explain the results you would expect if the apparatus was set up with germinating seeds at a temperature of 60 °C.

 predicted results

 explanation

 [2]

### [Turn over www.theallpapers.com

6 Some types of firework are made by filling a cardboard tube with firework mixture. Firework mixture is made from several solid substances which have been powdered and mixed together.

For Examiner's Use



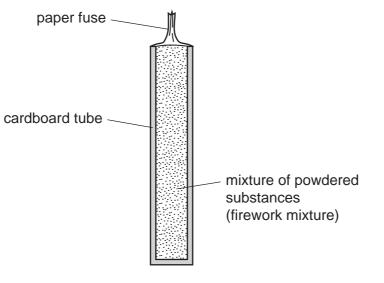



Fig. 6.1

When the paper fuse is lit, exothermic chemical reactions occur inside the firework.

(a) Explain, in terms of rate of reaction, why firework mixture is a powder.

| [2] |
|-----|

(b) Some firework mixtures contain aluminium which is oxidised to produce the ionic compound, aluminium oxide.

For Examiner's Use

(i) The electron configuration of an aluminium **atom** is **2**,**8**,**3** and of an oxygen **atom** is **2**,**6**.

Explain how aluminium and oxygen atoms become strongly bonded when they react to form aluminium oxide. You may draw some diagrams to help your explanation.

[4]

(ii) A student suggested the symbolic equation below for the formation of aluminium oxide.

 $2Al + 3O_2 \longrightarrow Al_2O_3$ 

State and explain whether or not this equation is balanced.

[2]

(c) The firework mixture contained in the firework in Fig. 6.1 contains the compound potassium perchlorate, KC lO<sub>4</sub>.
 When potassium perchlorate is heated, a colourless gas is given off which re-lights a glowing splint.

Suggest why the firework mixture needs to contain potassium perchlorate.

| <br>[2] |
|---------|

7 (a) On the grid below, draw a wave with an amplitude of 2 cm and a wavelength of 4 cm.On your diagram, clearly label the amplitude and the wavelength.

For Examiner's Use

[3]

(b) (i) Two sound waves, **A** and **B**, have the same frequency. **A** has a greater amplitude than **B**.

What difference would you hear?

......[1]

(ii) Two sound waves, X and Y, have the same amplitude. X has a greater frequency than Y.

What difference would you hear?

[1]

(iii) The speed of sound was calculated for sound passing through a solid, a liquid, a gas and a vacuum.

The values recorded were

| 0m/s    | 330m/s   |
|---------|----------|
| 1500m/s | 5000m/s. |

Write the values in the correct boxes in Table 7.1.

| Table | 7. | 1 |
|-------|----|---|
|-------|----|---|

|        | speed of sound<br>m/s |
|--------|-----------------------|
| vacuum |                       |
| solid  |                       |
| liquid |                       |
| gas    |                       |

[2]

For

Examiner's Use

(iv) Sound travels through the air by a series of compressions and rarefactions.

Explain what is meant by *compressions* and *rarefactions*. You may use a diagram to help your explanation.

[2]

 (c) Energy travels to the Earth from the Sun. State whether this transfer of energy is by conduction, convection or radiation. Explain your answer.
 (d) Light is able to travel down optical fibres by total internal reflection. Complete the diagram to show how the ray of light passes down the optical fibre.



[2]

19

8 Fig. 8.1 shows the male reproductive system.

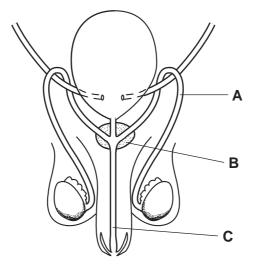
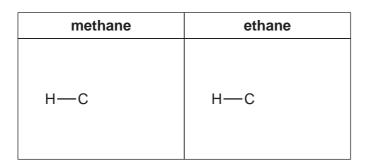




Fig. 8.1

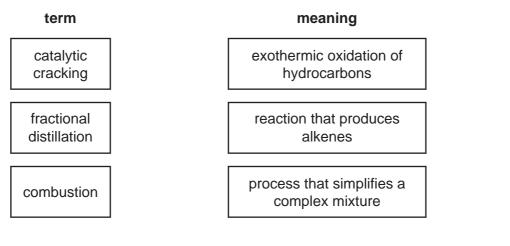
| (a) | (i)   | State the functions of parts <b>A</b> , <b>B</b> and <b>C</b> .                                     |
|-----|-------|-----------------------------------------------------------------------------------------------------|
|     |       | Α                                                                                                   |
|     |       | В                                                                                                   |
|     |       | C [3]                                                                                               |
|     | (ii)  | On Fig. 8.1, use a label line and the letter <b>S</b> to indicate where male gametes are made. [1]  |
| (b) |       | scribe <b>two</b> ways in which human male gametes differ from human female gametes.                |
|     | 1     |                                                                                                     |
|     | 2.    | [2]                                                                                                 |
| (c) |       | is the virus that causes AIDS. HIV can be passed from one person to another ing sexual intercourse. |
|     | Out   | line how HIV affects the immune system of a person with HIV/AIDS.                                   |
|     |       |                                                                                                     |
|     |       |                                                                                                     |
|     |       |                                                                                                     |
|     | ••••• | [2]                                                                                                 |

9 (a) (i) Methane and ethane are hydrocarbons found in fossil fuels.

Complete the structures of molecules of methane and ethane that have been started below.



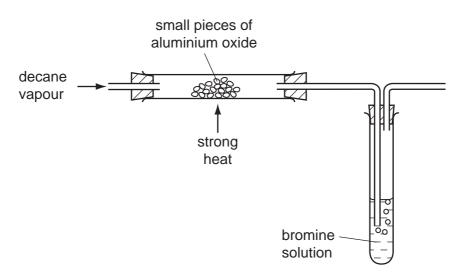
[2]


For Examiner's Use

(ii) Methane and ethane are found in refinery gas, which is an important product obtained from petroleum (crude oil).

State one use for refinery gas.

......[1]


(b) Draw three straight lines to connect each process or reaction in the left hand column with its meaning in the right hand column.



[2]

(c) Decane is a colourless liquid compound which has the chemical formula,  $C_{10}H_{22}$ .

Fig. 9.1 shows apparatus that a teacher used to show what happens when decane vapour is passed over a hot catalyst.





When the teacher started to pass the decane vapour through the apparatus, the solution of bromine rapidly changed colour from orange to colourless.

(i) Suggest and explain why the bromine solution changed from orange to colourless.

[3] (ii) Suggest why the catalyst was heated.

[1]

22

## **BLANK PAGE**

|                                             | 0  | 4<br>Heium | 20<br>Neon<br>Argon                                                                                  |                             | Radon Radon                                                                                                |                                                  | Lutetium                                            | Lr<br>Lawrencium<br>103                                                     |                 |                       |                                              |  |                |                 |
|---------------------------------------------|----|------------|------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------|-----------------|-----------------------|----------------------------------------------|--|----------------|-----------------|
|                                             | ٨I | n          | 19<br>Fluorine 10<br>35.5<br>C1<br>C1                                                                |                             | 127<br>  -  <br>3   lodine<br>3 Astatine<br>54<br>86                                                       | Ę                                                | 71<br>Ybb<br>Vtterbium<br>71                        | Nobelium L<br>102                                                           |                 |                       |                                              |  |                |                 |
|                                             | N  |            | 16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.00000 0.000000 | 79<br>Selenium<br>34        | 128<br>128<br>53<br>53<br>84<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85 |                                                  | To9<br>Thulium<br>69                                | Mendelevium<br>101                                                          |                 |                       |                                              |  |                |                 |
|                                             | >  |            | 7 Nitrogen 8<br>31 31 16<br>15 Photsphorus 16                                                        | 0                           | 122<br>Sb<br>51<br>Antimony<br>51<br>209<br>Bi<br>83<br>Bismuth<br>83<br>83<br>Bismuth<br>83               |                                                  | 10/<br>Er<br>68 Erbium                              | 100<br>Fermium                                                              |                 |                       |                                              |  |                |                 |
|                                             | ≥  |            | 6 Carbon<br>6 28<br>28 28<br>28 28<br>14                                                             | Ę                           | 119<br>50 Tin<br>207<br>82 Lead                                                                            | -<br>-<br>-<br>-                                 | Holmium                                             | Einsteinium<br>99                                                           |                 |                       |                                              |  |                |                 |
|                                             | ≡  |            | 11<br><b>B</b><br>Boron<br>5<br><b>Auminium</b><br>13                                                | 70<br><b>Ga</b><br>31<br>31 | 115<br>  <b>n</b><br>49<br>204<br><b>T 1</b><br>81                                                         | ξ.                                               | Dy Dysprosium 66                                    | <b>Cf</b><br>Californium<br>98                                              |                 |                       |                                              |  |                |                 |
| ents                                        |    |            |                                                                                                      | 65<br><b>Zn</b><br>30       | 112<br>Cadmium<br>48<br>Mercury<br>80                                                                      | ç                                                | Tb9<br>Terbium<br>65                                | BK<br>Berkelium<br>97                                                       |                 |                       |                                              |  |                |                 |
| The Periodic Table of the Elements<br>Group |    |            |                                                                                                      |                             | 64<br>Copper<br>29                                                                                         | 108<br><b>Ag</b><br>47<br>197<br>79<br>Gold      |                                                     | Gd<br>Gadolinium<br>64                                                      | e Curium<br>96  |                       |                                              |  |                |                 |
| Table of th<br>Group                        | 1  |            |                                                                                                      | 59 Nickel<br>Nickel         | 106<br>Palladium<br>46<br>195<br>Pt<br>Platinum<br>78                                                      | -                                                | Europium<br>63                                      | Americium<br>95                                                             |                 |                       |                                              |  |                |                 |
| riodic Ta<br>Gr                             |    |            | ບັ                                                                                                   | G                           | ۵                                                                                                          |                                                  |                                                     |                                                                             | _               | 59<br><b>Co</b><br>27 | 103<br>Rhođum<br>45<br>192<br>I r<br>Iriđium |  | Samarium<br>62 | Plutonium<br>94 |
| The Pel                                     |    |            | Hydrogen                                                                                             |                             | 56<br>Iron<br>26                                                                                           | 101<br>Ruthenium<br>44<br>190<br>OS Osmium<br>76 |                                                     | Promethium<br>61                                                            | Neptunium<br>93 |                       |                                              |  |                |                 |
|                                             |    |            |                                                                                                      | 55<br>Mn<br>Manganese<br>25 | Tc<br>Technetium<br>43<br>186<br>Rehenium<br>75                                                            |                                                  | 144<br>Neodymium<br>60                              | 238<br><b>U</b> ranium<br>92                                                |                 |                       |                                              |  |                |                 |
|                                             |    |            |                                                                                                      | 52<br>Chromium<br>24        | 96<br>Molybdenum<br>42<br>184<br><b>1</b> 184<br>Tungsten<br>74                                            | -                                                | Praseodymium<br>59                                  | Protactinium<br>91                                                          |                 |                       |                                              |  |                |                 |
|                                             |    |            |                                                                                                      | 51<br>Vanadium<br>23        | 93<br>Niobium<br>181<br>Tantalum<br>73                                                                     |                                                  | <b>Ce</b><br>Cerium<br>58                           | 232<br>Thorium<br>90                                                        |                 |                       |                                              |  |                |                 |
|                                             |    |            |                                                                                                      | 48<br>Trtanium<br>22        | P1<br>Zronium<br>178<br>178<br>178<br>Hf<br>178<br>178<br>178<br>178<br>178<br>178<br>178<br>178           | +                                                |                                                     | mic mass<br>nbol<br>mic) number                                             |                 |                       |                                              |  |                |                 |
|                                             |    |            |                                                                                                      | 45<br>Scandium<br>21        | 89<br>39<br>139<br>139<br>Lanthanum<br>57                                                                  |                                                  | d series<br>series                                  | a = relative atomic mass<br>X = atomic symbol<br>b = proton (atomic) number |                 |                       |                                              |  |                |                 |
|                                             | =  |            | 9<br>Berylium<br>4<br>24<br>Mg<br>Mg<br>Magnesium                                                    | 40<br>Calcium<br>20         | 88<br>Strontium<br>38<br>137<br>137<br>Banium<br>56                                                        | 226<br>Radium<br>88                              | *58-71 Lanthanoid series<br>190-103 Actinoid series | α ×                                                                         |                 |                       |                                              |  |                |                 |
|                                             | -  |            | Lithium<br>3 Lithium<br>23<br>23<br>23<br>23<br>23<br>23<br>11                                       | 39<br>Reclassium            | 85<br>Rubidium<br>37<br>133<br>CS<br>Caesium                                                               | Francium<br>87                                   | 58-71 L<br>90-103                                   | ه<br>۲                                                                      |                 |                       |                                              |  |                |                 |

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

### www.theallpapers.com

24