MARK SCHEME for the October/November 2012 series

0653 COMBINED SCIENCE

0653/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2				Paper	
			IGCSE – October/November 2012	0653	32	
1	(a) ha	aemoglobin ;				
	(b) (i)	abso	orb, water/mineral ions/correct named ion ;		[1]	
	(ii)		e surface area ; that more water/ions can be absorbed (at the sam	e time) ;	[2]	
	(c) (i)	inne	r parts of at least one oval shaded ;		[1]	
	(ii)) C, B	B, A ;		[1]	
	(iii)	as w	spiration/evapotranspiration ; /ater vapour/reference to evaporation ; ugh the stomata ;			
		by d	iffusion ;		[max 3]	
					[Total: 9]	
2	(a) 11 7				[2]	
	(b) (i) (ii)	and (rea halic beca	ept yellow through orange ; brown through black (solid) ; ction occurs because) chlorine displaces/oxidises t de/halogen ; ause chlorine is more reactive/reactivity decreases		[3]	
		mos alka mos	t vigorous would be between most reactive haloger li metal ; t reactive alkali metal is rubidium/reactivity increase ent should use rubidium (with fluorine) ;		[max 2]	
	[1	mark f	───► 2KBr ; ; for KBr, 1 mark for Br _{2,} 1 for balanced] allow balance mark for K + Br ───► KBr)		[3]	
					[Total: 10]	

Page 3		6	Mark Scheme	Syllabus	Paper
			IGCSE – October/November 2012	0653	32
3	(a) (i)	•	articles are closer together in liquid/correct reference to density ; articles collide/transmit energy more quickly in liquid ;		[2]
	(ii)	-	ter amplitude ; e frequency ;		[2]
	(iii)	10 to	o 20 (Hz) to 20 000 to 25 000 (Hz) ;		[1]
	(iv)		nd waves – longitudinal ; er waves – transverse ;		[1]
	(b) (i)	(time =) distance/speed ; = 0.0012 s ;			[2]
	(ii)		ed = frequency × wavelength or wavelength = speed 0/2200 = 0.15 m ;	d/frequency ;	[2]
					[Total: 10]
4	(a) (i)	• •	organisms and their environment ; acting together ;		[2]
	(ii)	ener	gy (flow) ;		[1]
	(iii)	seco	ondary consumer/third trophic level ;		[1]
	(iv)		gy lost, between trophic levels/from one organism enough energy to support more than five levels ;	to another ;	[2]
	poll bee poll	linatio es cari len co	e to sexual reproduction ; in ; ry pollen from anther/to stigma/to a another plant ; intains male gametes ; e to fertilisation (following pollination) ;		
			rmed ;		[max 3]
					[Total: 9]

	Page 4		Mark Scheme Sy		Paper
			IGCSE – October/November 2012	0653	32
5	 (a) goes cloudy ; because solid/precipitate/calcium carbonate produced ; OR goes cloudy and then clears ; because precipitate/calcium carbonate forms and re-dissolves ; 				
	(b) (i)	D ;			[1]
	(ii)		easing temperature increases rate/ORA ; easing concentration/higher ratio water:acid decrea	ases rate/ORA ;	[2]
			easing temperature causes increase in particle spee eases frequency of collisions between acid particles eases energy of collisions between acid particles an	and tablet ;	[max 2]
					[Total: 7]
6	(a) (i)		V/I ; 0.2 = 10Ω and = 4/0.31 = 12.9Ω ;		[2]
	(ii)		ent not (directly) proportional/current does not incre ease decreases/begins to level off ;	ase as much/rate	of [1]
	(b) (i)	angl	e of incidence labelled and angle of reflection labell	ed ;	[1]
	(ii)	45° ;	• •		[1]
					[Total: 5]

	Page 5			Mark Scheme	Syllabus	Paper
				IGCSE – October/November 2012	0653	32
7	(a)	E ; C ;				[2]
	(b)		acid	acids produced ; s lower pH ;		[2]
		(ii)	the r refer	B was at a higher temperature ; reaction took place faster ; rence to greater kinetic energy of (reacting) particles uency between enzyme and substrate ;	s/greater collision	[3]
	(c)	heart disease ; reference to atherosclerosis/build-up of plaques/cholesterol in arteries ;				
		reference to obesity ; (obesity leads to) greater risk of diabetes/heart disease/high blood pressure ;				[max 2] [Total: 9]
8	(a)	(i)		nane ; nane + oxygen ; ——► carbon dioxide + water ; (Ll	HS,RHS)	[3]
		(ii)	sulfu reac	s combusted reference to combustion/oxidation ; ir dioxide produced ; ts/dissolves in atmospheric water to form acid rain ic water gathers in rivers and lakes/acid does not e		es; [4]
	(b)	(i)				

H S H

two shared pairs ; lone pairs on sulfur ; [2] (max 1 if symbols missing or incorrect or if extraneous electrons present)

[Total: 9]

Mark Scheme	Syllabus	Paper
IGCSE – October/November 2012	0653	32
		[2]
s are lost from car/gained by plastic surface ;	arges ;	[max 3]
Ε;		[1]
		[1]
	1/s²;	[2]
$(2 \times 0.4 \times 5) + (0.4 \times 2.5) + (\frac{1}{2} \times 0.4 \times 12.5) / = 1.0$	+ 1.0 + 2.5 ;	[3] [Total: 12]
	IGCSE – October/November 2012 $4mv^2$; 5 × 0.5 × 0.5 = 0.0625 J; between materials; s are lost from car/gained by plastic surface; reference to imbalance of positive and negative ch b C (no mark) (m/s); b B; eleration = change in speed/time = 0.4/5 = 0.08 m a under graph implied;	IGCSE - October/November 20120653 4 mv^2 ; $5 \times 0.5 \times 0.5 = 0.0625 \text{ J}$;between materials ; $s = 0.0625 \text{ J}$;between materials ; $s = 10.0625 \text{ J}$;