

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

NAME CENTRE		CANDIDATE	
NUMBER COMBINED SO	CIENCE	NUMBER	0653/21

Paper 2 (Core)

October/November 2011

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 20 printed pages.

1 The chemical reaction involved in the manufacture of ammonia requires an iron catalyst.

For Examiner's Use

Fig.1.1 shows a simplified diagram of the reaction vessel in which ammonia is made.

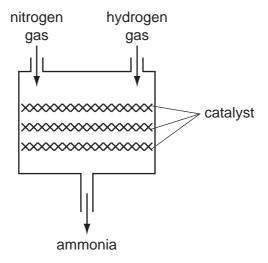
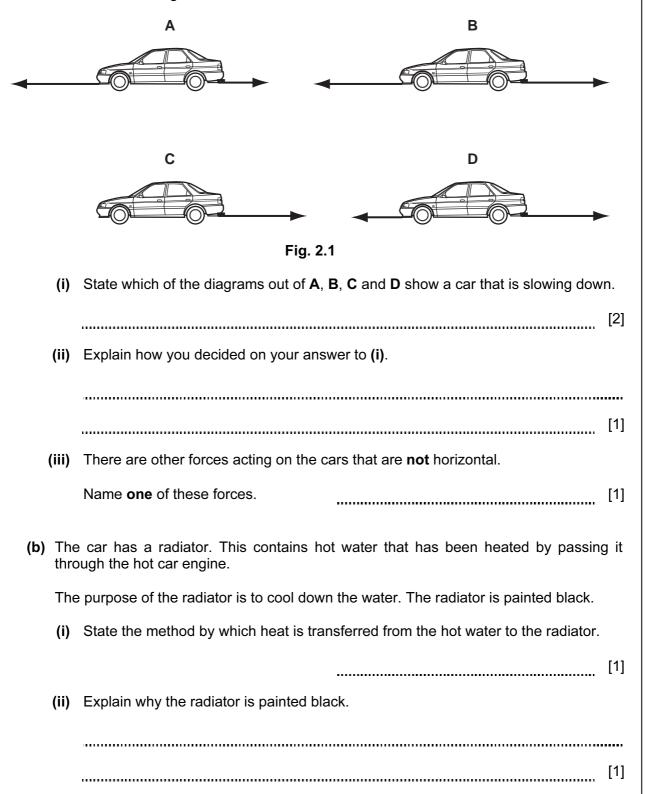



Fig. 1.1

(a)	(i)	Explain the meaning of the term catalyst.	
			[2]
	(ii)	Iron is a member of the family of metals which lies between scandium and zinc the Periodic Table.	in
		Name this family of metals.	[1]
(iii)	The iron catalyst is prepared by reacting iron oxide with hydrogen gas.	
		The balanced symbolic equation for this reaction is shown below.	
		$Fe_3O_4 + 4H_2 \longrightarrow 3Fe + 4H_2O$	
		State the total number of atoms shown on the left hand side of this equation.	
			[1]
(iv)	State the number of hydrogen molecules shown in the equation in (iii).	
			[1]

	rol				
	rol				
	[2]				
(b) (i)	Complete the displayed (graphical) chemical formula of an ammonia molecule, NH_3 , which has been started below.				
	H - N				
	[2]				
(ii)	A student states that an ammonia molecule contains covalent chemical bonds between its atoms.				
	Explain whether or not the student is correct.				
(ii)	between its atoms.				

2 (a) The arrows in Fig. 2.1 show the horizontal forces acting on a car moving forwards. In each case the length of the arrow indicates the size of the force.

(c) Fig. 2.2 shows a racing car.

Fig. 2.2

The car took 1.5 hours to complete a race of 330 kilometres.

Calculate the average speed of the car in kilometres per hour.

State the formula that you use and show your working.

formula used

working

km/h [2]

(d) Fig. 2.3 shows the speed–time graph for the racing car over a short period of time.

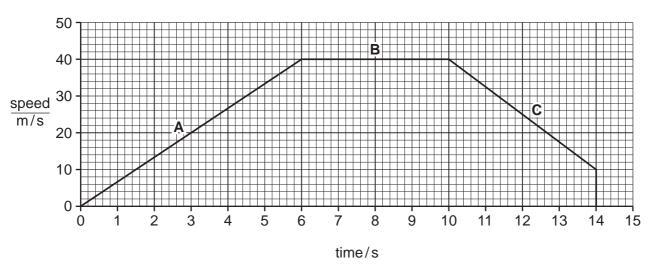


Fig. 2.3

Describe the motion of the racing car during

section B,

section C. [2]

3 Rice and cassava are important parts of a person's diet in some parts of the world.

For Examiner's Use

(a) Table 3.1 shows the main nutrients present in 100 g of white rice and 100 g of cassava.

Table 3.1

nutrient	white rice	cassava
protein/g	5.0	1.2
carbohydrate/g	58.6	34.7
fat/g	0.4	0.3

(i)	Which of the nutrients listed in Table 3.1 can provide energy?
	[1]
(ii)	A diet that consists mostly of rice is better for a young child than a diet that consists mostly of cassava.
	Use the information in Table 3.1 to explain one reason why this is so.
	[2]
(iii)	Carbohydrates include sugars and starch.
	Describe how a student could test a sample of cooked rice to find out if it contains reducing sugar.
	[3]

(b) Fig. 3.1 shows a cassava plant.

For Examiner's Use

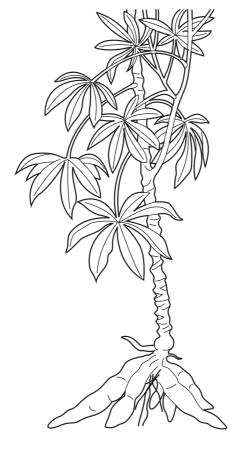


Fig. 3.1

The cassava plant makes food in its leaves.

(i)	Describe how food is made by photosynthesis in a plant's leaves.
	[2]
(ii)	Suggest and explain one way, visible in Fig. 3.1, in which the structure of a cassava plant's leaves helps them to carry out photosynthesis.
	[2]

(a) Fig. 4.1 shows an incomplete diagram of the electromagnetic spectrum.

/S	

For Examiner's Use

Fig. 4.1

(i) Complete the diagram using terms from the list:

		gamma radiation	microwaves	ultraviolet	[2]
	(ii)	State one use for			[-]
		infra-red radiation,			
		microwaves.			
					[2]
(b)	Gaı	mma radiation and X-rays are two e	examples of ionising ra	adiation.	
	(i)	Explain the meaning of the term id	onising radiation.		
	/::\	Explain why ionising radiation can	he hermful to living th	singo.	[2]
	(ii)	Explain why ionising radiation can	be narmur to living tr	iings.	
					••••
					[2]

© UCLES 2011 0653/21/O/N/11

(c)		me types of food are treated with gamma radiation. The radiation kills the microbes t make food decay	
	(i)	Explain why gamma radiation can be used for this, even when the fruit is packed in boxes.	

(ii) Fig. 4.2 shows how a conveyor belt can be used to move the boxes of fresh fruit past the radioactive source.

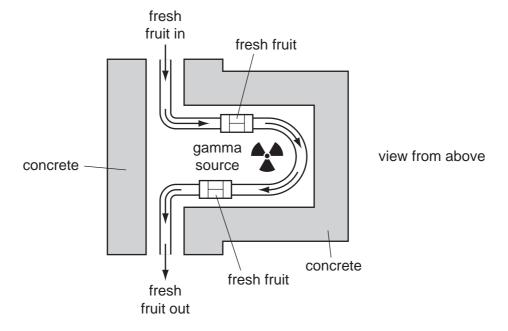


Fig. 4.2

Suggest why concrete is used to surround the radioactive source.					
	[1]				

5 Fig. 5.1 shows a piece of magnesium ribbon which a student has just dropped into a container of dilute sulfuric acid.

For Examiner's Use

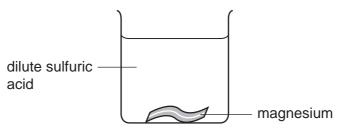
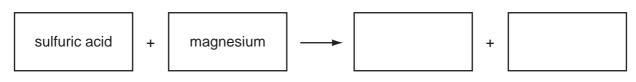



Fig. 5.1

(a)	(i)	Describe two	observations	about this	reaction which	the student	could make
۱	aj	(' <i>'</i>	Describe two	ODSCI VALIONS	about tills	Teachor writer	tile student	could make.

1	
••••	
2	
	 [2]

(ii) Complete the word chemical equation for the reaction in (i).

[2]

(iii) State the **name** of the element which is present in both hydrochloric acid and sulfuric acid.

Į.	1	1
 -		•

(b)		ontainers for dilute sulfuric acid are often made of poly(ethene). Poly(ethene) is a lymer which is formed from hydrocarbon monomers.						
	(i)	Suggest one property of poly(ethene) which makes it suitable for making sulfuric acid containers.						
		[1]						
	(ii)	One method of dealing with waste poly(ethene) is to burn it.						
	Predict two compounds which will be produced when poly(ethene) is burnt.							
		1						
		2[2]						
((iii) Suggest one advantage of burning as a means of dealing with waste poly(et							
		[1]						

© UCLES 2011

6 Fig. 6.1 shows part of the human nervous system.

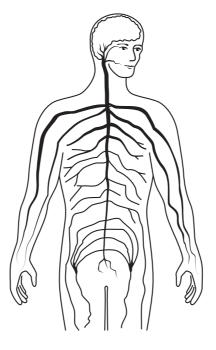


Fig. 6.1

- (a) On Fig. 6.1, use label lines to indicate and name the **two** parts of the central nervous system. [2]
- **(b)** If a person touches a hot pan with his finger, signals pass from his hand, through the central nervous system, to a muscle in his arm. The muscle contracts and moves the arm away.

State the correct biological term for each of the following descriptions.

(i)	the	cells	in	the	finger	that	detect	the	hot	pan	and	send	signals	to	the	central
	ner	ous s	sys	tem												

(ii) an organ such as a muscle that responds to the signals

[1]
 L -

(c)	A n	erve cell has a nucleus and a cell surface membrane.	
	(i)	Name one type of cell in the human body that does not contain a nucleus.	
			[1]
	(ii)	The nucleus contains DNA. State the function of DNA.	
			[1]
	(iii)	Outline one function of the cell surface membrane.	
			[1]

© UCLES 2011

7 Fig. 7.1 shows some data about the percentage by mass of elements in the Earth's crust.

For Examiner's Use

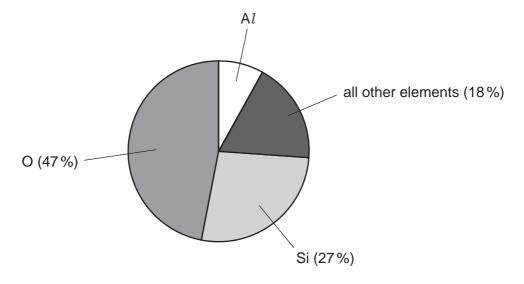


Fig. 7.1

[1]	ı
 ι'.	ı

(b) Fig. 7.2 shows a diagram of an ion of element **E**.

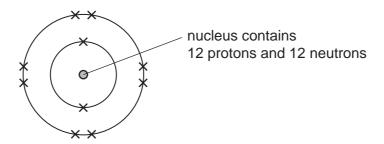
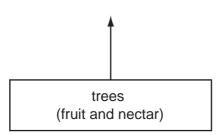


Fig. 7.2

(i) Name element **E** and explain how the diagram shows that the ion has a positive electrical charge.

name or element E	 	
		[3]


(i	ii)	Name the noble gas whose atoms have the same number of electrons as the ion shown in Fig. 7.2	For Examiner's Use
		[1]	
(ii	ii)	Explain, in terms of electron configuration, why the atoms of all the noble gases are unreactive.	
		[1]	
		7.3 shows a simplified diagram of a process which could be used to produce the ctive metal, sodium.	
		electric power supply molten sodium chloride	
		Fig. 7.3	
((i)	Name the process shown in Fig. 7.3.	
		[1]	
(i	ii)	Name the element which forms at the anode.	
		[1]	

8 The golden lion tamarin is a species of monkey that lives in forests in Brazil. Its diet includes fruits and nectar from trees. Its predators include snakes, bamboo rats and owls.

For Examiner's Use

(a) (i) In the space below, complete the food web, using the information above.

[3]

(ii) On your food web, draw a circle around the producer.

[1]

(b) The nectar that the monkeys eat is made by flowers that grow on some of the trees in the forests. The fruits that the monkeys eat develop from the flowers.

For Examiner's Use

Fig. 8.1 shows a section through a flower.

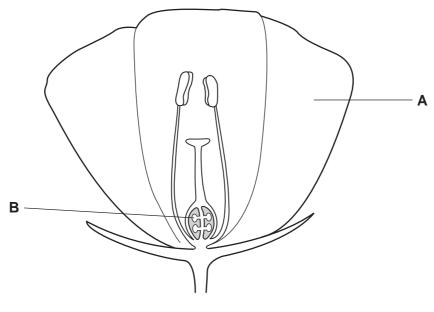


Fig. 8.1

(i) Name the parts labelled A and B.

Α	
В	[2]

- (ii) On Fig. 8.1, label the part that produces pollen, using a label line and the letter P. [1]
- (iii) On Fig. 8.1, label the part that will develop into a fruit, using a label line and the letter **F**. [1]
- (iv) Explain why the flower produces nectar.

	[2]

9 (a) Fig. 9.1 shows the circuit diagram of a circuit which a student set up. He measured the current passing through the 2Ω resistor. The ammeter reading was 6A.

For Examiner's Use

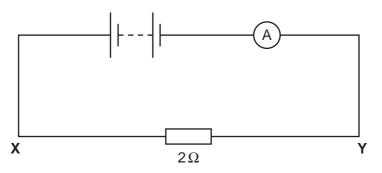


Fig. 9.1

(i) Show that the voltage across the resistor was 12 V.

State the formula that you use and show your working.

formula used

working

[2]

(ii) A 4Ω resistor is placed in series with the 2Ω resistor between **X** and **Y**.

Calculate the total resistance between X and Y.

State the formula that you use and show your working.

formula used

working

Ω [2]

o)	electricity.
	Explain why is it necessary to find alternative energy sources for generating electricity.
	[2]

DATA SHEET
The Periodic Table of the Elements

_	=							5	dnod			≡	≥	>	>	=	0
							T Hydrogen										4 He lium
7 Lithium	9 Be Beryllium							_				11 Boron	12 Carbon 6	14 Nitrogen 7	16 Oxygen 8	19 Fluorine	20 Ne 01
23 Sodium	24 Mg Magnesium											27 A1 Aluminium 13	28 Si Silicon	31 Phosphorus 15	32 S Sulfur 16	35.5 C1 Chlorine	40 Ar Argon
39 K Potassium	40 Ca Calcium	Scandium	48 T Titanium	51 Vanadium 23	CC Chromium 24	Mn Manganese	56 Fe Iron	59 Co Cobalt	59 Nickel	64 Copper 29	65 Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium 32	75 AS Arsenic	Se Selenium 34	80 Br Bromine 35	84 K rypton 36
Rb Rubidium	Sr Strontium	89 ×	2r Zrzonium 40	93 Nob ium 141	96 Mo Molybdenum 42	Tc Technetium 43	Rut Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	Cadmium 48	115 In Indium 49	Sn Tin	122 Sb Antimony 51	128 Te Tellurium 52	127 I lodine	131 Xe Xenon 54
Caesium	137 Ba Barium 56	139 La Lanthanum s	178 H Hatnium	181 Ta Tantalum	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 I r Iridium 77	195 Pt Platinum 78	197 Au Gold	Hg Mercury 80	204 T 1 Thallium	207 Pb Lead	209 Bi Bismuth	Po Polonium 84	At Astatine 85	Rn Radon 86
Fr Francium	226 Ra Radium 88	227 Ac Actinium 89															
-71 La -103 A	anthano Actinoid	*58-71 Lanthanoid series 190-103 Actinoid series		140 Ce Cerium	Pr Praseodymium 59	Neodymium 60	Pm Promethium 61	150 Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	173 Yb Ytterbium 70	175 Lu Lutetium 71
Key	a ×	a = relative atomic mass X = atomic symbol b = proton (atomic) number		232 Th Thorium	Pa Protactinium 91	238 U Uranium 92	Np Neptunium 93	Pu Plutonium 94	Am Americium 95	Cm Curium 96	BK Berkelium 97	Californium	ES Einsteinium 99	Fm Fermium	Mendekvium 101	Nobelium	Lr Lawrencium 103

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).