

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

	CANDIDATE NAME		
	CENTRE NUMBER	CANDIDATE NUMBER	
* 0 4 9 7 2 3	COMBINED SC Paper 3 (Extend	IENCE led) O	0653/31 ctober/November 2010 1 hour 15 minutes
8 9 2 1	Candidates ans No Additional M	wer on the Question Paper. aterials are required.	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 19 printed pages and 1 blank page.

UNIVERSITY of CAMBRIDGE International Examinations

[Turn over

1 Fig. 1.1 shows a rock that is falling from the top of a cliff into the river below.

(a) The rock accelerates downwards at 10 m/s^2 . The mass of the rock is 4 kg.

Calculate the force pulling the rock downwards.

State the formula that you use and show your working.

formula used

working

[2]

(b) Fig. 1.2 is speed-time graph for the motion of the rock. This graph ignores the effects of air resistance on the rock.

	Cal	culate the height of the cliff.	For Examiner's
	Sho	w your working.	Use
		[2]	
(c)	The	e rock has an irregular shape.	
	Des You mał	scribe how you could find the density of an irregularly shaped object such as a rock. I should state the apparatus you would use and the measurements you would need to ke.	
	•••••	[4]	
(d)	The	rock contains radioactive substances emitting high levels of ionising radiation.	
	(i)	State how the radioactivity could be detected.	
		[1]	
	(ii)	Explain why it would be dangerous for a person to handle this rock without proper protection.	
		[1]	

- 2 The gray wolf is a predator that lives in North America.
 - (a) In Wisconsin, Canada, the wolves' diet consists mainly of white-tailed deer, beaver, and snowshoe hares. These all eat plants.
 - (i) Construct a food web including all the organisms mentioned above.

(ii)	State what the arrows in your food web represent.
	[1]
(iii)	With reference to your answers to (i) and (ii), suggest why wolves are rarer than white-tailed deer.
	[2]

For Examiner's Use

[3]

(b) People used to shoot gray wolves, because the wolves kill sheep on farms and deer that people like to hunt.

In 1978, a conservation programme for gray wolves began in Wisconsin and people were no longer allowed to shoot them.

Some people in Wisconsin are opposed to the wolf conservation programme.

Discuss the arguments for and against conserving the gray wolf.

[3]

For

Examiner's Use **3 (a)** Copper metal reacts with oxygen gas to form copper oxide. Table 3.1 shows information about two different types of copper oxide.

For Examiner's Use

Tal	hle	3	1
I a	nie	ວ.	

name	colour	chemical formula	
copper(II) oxide	black	CuO	
copper(I) oxide	red	Cu ₂ O	

(i) Copper is a transition metal.

State **one** property, shown in Table 3.1, which is typical of transition metals.

......[1]

(ii) The formula of the oxide ion is O^{2-} .

Use the formula of $\operatorname{copper}(I)$ oxide to deduce the charge on the copper ion in this compound.

Show your working.

•••••
 [2]

(b) Fig. 3.1 shows apparatus used in the electrolysis of copper chloride solution.

Fig. 3.1

(i) On the diagram, label clearly the anode and the electrolyte. [2]
(ii) Copper chloride solution contains copper ions and chloride ions.
When the switch in Fig. 3.1 is closed, bubbles of chlorine gas form at the anode and copper metal forms at the cathode.
Explain these observations in terms of ions, electrons and atoms.

4 (a) Fig. 4.1 shows a ray of light hitting a mirror. The angle of incidence is 50° .

Fig. 4.1

On Fig. 4.1

- (i) use a ruler to draw and label the reflected ray,
- (ii) use a ruler to draw and label the normal,
- (iii) label the angle of incidence.
- (b) Fig. 4.2 shows the wave traces made by three sounds.

trace A	trace B	trace C

(i) On the grid below, draw the trace of a sound wave which has twice the frequency of trace **A**.

[1]

[1]

[1]

[1]

For Examiner's Use

(ii) On the grid below, draw the trace of a sound wave which has half the amplitude of trace **A**.

[1]

(iii) Which two traces in Fig. 4.2 show sounds with the same loudness?

[1]

5 In jet engines, hydrocarbon molecules from the jet fuel mix with air and burn. This releases a large amount of energy and produces a mixture of waste gases. These waste gases pass out through the back of the jet engine into the atmosphere.

For Examiner's Use

(a) Fig. 5.1 shows a molecule of octane, which is a typical hydrocarbon molecule in jet fuel.

- (i) State the chemical formula of octane.
- (ii) Complete the word equation below for the complete combustion of octane.

- (b) Air contains the element nitrogen, N₂.
 - (i) State the number of outer electrons in a single nitrogen atom.
 - (ii) Complete the bonding diagram below to show how the outer electrons are arranged around the atoms in a nitrogen molecule.

0653/31/O/N/10

[2]

[1]

[1]

.....

.....

(c) Table 5.1 shows information about some metallic materials.

Table 5.	1
----------	---

material	strength	density	
mild steel	very high	very high	
aluminium	low	low	
duralumin (an aluminium allo	y) very high	low	

Duralumin is used in the manufacture of aircraft.

Explain why the properties of this material make it suitable for this purpose.

[2]

Fig. 6.1 shows a generalised reflex arc. Examiner's neurone Υ central nervous neurone neurone system Х Ζ receptor effector Fig. 6.1 (a) Name the neurones labelled X, Y and Z. Х Υ Ζ [3] (b) A student hears a sudden, loud bang. Receptors in his ear respond to the sound by generating electrical impulses in neurone **X**. These impulses travel along the reflex arc, eventually reaching an effector. Suggest what the effector could be in this reflex, and how it would respond. effector [2] response (c) Another reflex action involves the secretion of saliva into the mouth, in response to the smell of food. Saliva contains the enzyme amylase. Describe the role of amylase in the digestion of food. (i) [2] (ii) Explain why it is necessary for most types of food that we eat to be digested. [2]

6

[Turn over www.theallpapers.com

For

Use

(iii) On the axes below, sketch a curve to show how the activity of amylase from human saliva would vary with temperature.

[2]

For

Examiner's Use 7 (a) A student set up the electric circuit in Fig. 7.1.

It contains three lamps **L1**, **L2** and **L3**.

It contains three switches S1, S2 and S3.

Fig. 7.1

In Table 7.1 write the words **'on'** or **'off'** to show when each lamp is lit or not lit for each set of switch positions.

swi	tch posi	tion	lam	p 'on' or	'off'
S1	S2	S 3	L1	L2	L3
closed	closed	closed			
closed	closed	open			
closed	open	open			

[3]

(b) Fig. 7.2 shows an electrical device. For Examiner's Use -0 primary coil O secondary coil 20 turns 200 turns 23 V a.c. 0 -0 Fig. 7.2 (i) Name the device. [1] (ii) Calculate the output voltage. State the formula that you use and show your working. formula used working [2]

(c) Fig. 7.3 shows a simple a.c. generator.

Describe and explain how the generator works. Your answer should refer to

- how a voltage is generated,
- why an alternating voltage is generated,
- why slip rings are used.

[4]

8 (a) Explain why plants need light for photosynthesis.

[2]

(b) A student fixed a piece of black paper over a leaf, which was still attached to the plant. He left the plant in the sun for two days.

He then removed the leaf from the plant and tested it for starch, after removing the black paper.

Fig. 8.1 shows the leaf before and after he did the starch test.

before testing

after testing

For Examiner's Use

Fig. 8.1

Complete the diagram of the leaf after testing in Fig. 8.1, using labels to show the colours of each part. Do **not** colour the diagram. [2]

(c) In daylight, plant leaves take in carbon dioxide and give out oxygen. In darkness, they take in oxygen and give out carbon dioxide.

Explain why this happens.

[3]

9 Fig. 9.1 shows the apparatus a student used to measure the rate of reaction between some powdered metal and dilute hydrochloric acid.

Fig. 9.1

When the student tilted the conical flask, the acid mixed with the powdered metal. Any gas which was produced collected in the test-tube, pushing the water out. The student used a stopwatch to measure the time taken for the test-tube to fill with gas.

- (a) (i) Name the gas produced when metals react with dilute acid.
 - [1]
 - (ii) State the formula of the *ion* that is present in **all** dilute acid solutions.

......[1]

For

(b) The student used apparatus like that in Fig. 9.1 to compare the rates of reaction between dilute hydrochloric acid and three powdered metals, **X**, **Y** and **Z**.

The results the student obtained are shown in Table 9.1.

metal	mass of metal/g	time for gas to fill the test-tube/seconds
X	1.0	154
Y	1.0	28
Z	1.0	76

Table 9.1

(i) The student was careful to ensure that the only variable (factor) which differed between the experiments was the type of metal.

State **two** variables, other than the mass and surface area of the metals, that the student must keep the same in each experiment.

1	
2	 [2]

(ii) Explain how the results show that the rate of reaction was the lowest when metal **X** was used.

[1]

(iii) The student repeated the experiment with metal **Y** but this time he used a single piece of metal which had a mass of 1.0 g.

State how the rate of reaction would differ from the experiment in which 1.0 g of powdered metal was used. Explain your answer in terms of the collisions between the surface of the metal and ions in the solution.

[3]

(c) When magnesium reacts with dilute hydrochloric acid, HCl, one of the products is magnesium chloride, MgCl₂.

Construct a balanced symbolic equation for this reaction.

[2]

BLANK PAGE

19

$ \begin{bmatrix} 1 & & & \\ & & & \\ & & $									Gre	dnc								
1 1	_	=												N	>	١٨	١١٨	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								+ Hydrogen										4 Helium 2
	Li Lithium	9 Berylliur											5 Boron	6 Carbon	14 Nitrogen	16 Oxygen 8	Fluorine	20 Neon 10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	23 Na Sodium	24 Mg Magnesiu 12	E										27 A1 Auminium 13	28 Silicon	31 Phosphorus 15	32 S ultur 16	35.5 C1 17 17	40 Ar Argon
85 88 89 91 93 96 101 103 106 102 112 112 112 113 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In 103 106 103 106 103 106 103 106 103 106 103 106 103 106 103 106 103 106 103 106 103 106 103 106 103 106 103 106 103 106 103 106 103 106 103 106 103 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 107 106 106 107 106 107 106 107 107 106 107 107 106 107 108 106 107 108 <td>39 X X Xassium</td> <td>40 Calcium 20</td> <td>45 SC Scandium 21</td> <td>48 Titanium 22</td> <td>51 Vanadium 23</td> <td>52 Chromium 24</td> <td>55 Manganese 25</td> <td>56 Iron 26</td> <td>59 Co 27 27</td> <td>59 Nickel X 59</td> <td>64 Copper 29 29</td> <td>65 Zinc 30</td> <td>70 Ga ^{Gallium} 31</td> <td>73 Ge Germanium 32</td> <td>75 AS Arsenic 33</td> <td>79 Selenium 34</td> <td>80 Br Bromine 35</td> <td>84 Krypton 36</td>	39 X X Xassium	40 Calcium 20	45 SC Scandium 21	48 Titanium 22	51 Vanadium 23	52 Chromium 24	55 Manganese 25	56 Iron 26	59 Co 27 27	59 Nickel X 59	64 Copper 29 29	65 Zinc 30	70 Ga ^{Gallium} 31	73 Ge Germanium 32	75 AS Arsenic 33	79 Selenium 34	80 B r Bromine 35	84 Kry pton 36
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	85 Rb ^{Jbidium}	88 Sr Strontiun 38	n 39 Yttrium	91 Zr Zirconium 40	93 Niobium 41	96 Molybdenum 42	Technetium 43	101 Ru Ruthenium 44	103 Rh odium 45	106 Pd Palladium 46	108 Ag Silver	112 Cd Cadmium 48	115 In Indium	119 Sn 50	122 Sb Antimony 51	128 Te ^{Tellurium}	127 I Iodine 53	131 Xe Xenon 54
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	133 CS aesium	137 Ba Barium 56	139 La Lanthanum 57 *	178 Hafnium 72	181 Ta Tantalum 73	184 V Tungsten 74	186 Re Rhenium 75	190 OS Osmium 76	192 I r Iridium 77	195 Pt Platinum 78	197 Au Gold 79	201 Hg ^{Mercury}	204 T 1 1hallium	207 Pb Lead 82	209 Bismuth 83	Polonium 84	At Astatine 85	Radon B6
-71 Lanthanoid series 140 141 144 FM 5M Eu Gd Tb Dy 162 157 159 157 159 152 157 159 152 157 159 152 157 159 152 157 159 152 153 153 153 153 153 153 153 153 153 153	Fr ancium	226 Ra Radium 88	227 Actinium 89															
a a = relative atomic mass 232 238	-711	Actinoic	oid series d series	1	140 Cer ium 58	141 Praseodymium 59	144 Neodymium 60	Promethium 61	150 Sam arium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Erbium 68	169 Tan 69	173 Yb ^{Ytterbium} 70	175 Lu Lutetium 71
X X = atomic symbol In Pa U Np Pu Am Cm BK C1 b b = proton (atomic) number 91 92 93 94 95 97 98 91	٩	е Х	a = relative atoı X = atomic syrr b = proton (ator	mic mass abol nic) number	232 Thorium 90	Protactinium 91	238 Uranium 92	Neptunium 93	Plutonium 94	Am Americium 95	66 Curium	BK Berkelium 97	Cf califormium 98	Einsteinium 99	100 Fermium	Mendelevium 101	Nobelium 102	Lr Lawrencium 103

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

www.theallpapers.com

20