

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER		CANDIDATE NUMBER
COMBINED S	CIENCE	0653/03
Paper 3 (Exten	ided)	October/November 2007
		1 hour 15 minutes
Candidates and	swer on the Question Paper.	
No Additional N	Materials are required.	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

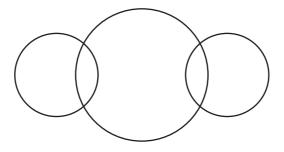
The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 21 printed pages and 3 blank pages.

1 Hydrogen peroxide, H_2O_2 , is a colourless liquid.

Hydrogen peroxide decomposes according to the equation below.


For Examiner's Use

hydrogen peroxide	\rightarrow	water	+	oxygen
-------------------	---------------	-------	---	--------

(a) State the total number of atoms which are bonded in one molecule of hydrogen peroxide.

[1]
 [,]

- **(b)** Complete the bonding diagram below to show
 - the chemical symbols of the elements in a molecule of water,
 - the arrangement of the outer electrons of each atom.

[2]

(c) Fig. 1.1 shows apparatus which a student used to measure the rate at which hydrogen peroxide decomposes.

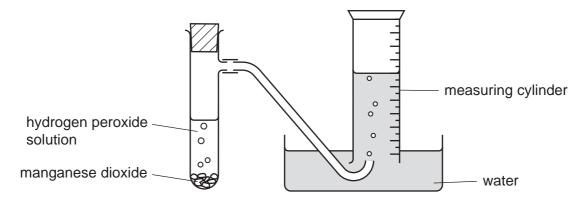


Fig. 1.1

The student measured the time for a known volume of oxygen gas to collect in the measuring cylinder.

Table 1.1 shows results the student obtained for four experiments, **A**, **B**, **C** and **D**.

For Examiner's Use

Table 1.1

experiment	volume of oxygen gas collected /cm ³	time taken for oxygen to collect /seconds
Α	40	35
В	40	15
С	40	10
D	40	25

(i)	State and explain in which experiment, A , B , C or D , the reaction rate was the highest.
	[1]
(ii)	State and explain, in terms of particles, one variable (factor) which the student could have changed in order to obtain the results shown in Table 1.1.
	[3]

2 Fig. 2.1 shows the inside of a refrigerator.

For Examiner's Use

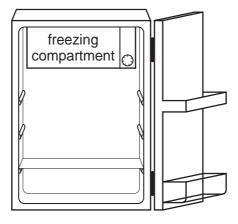


Fig. 2.1

(a) (i) Draw arrows on Fig. 2.1 to show what happens to the air cooled by the freezing compartment. [1]

(ii) Use the idea of density to explain why this happens. [2]

(b) When the refrigerator is used for 60 minutes, 360 000 joules of electrical energy are converted.

(i) How many joules of energy are converted per second? [1]

(ii) What is the power of the refrigerator?

(c)		e refrigerator has two lamps inside. The supply voltage is 240 V and ssing through each lamp is 0.04 A.	the curr	ent
	(i)	Show that the resistance of one lamp is 6000Ω .		
		State the formula that you use and show your working.		
		formula used		
		working		
				[4]
				[1]
	(ii)	The lamps are connected together in parallel.		
		Calculate the combined resistance of the two lamps.		
		State the formula that you use and show your working.		
		formula used		
		working		
				[0]
				[3]

[Turn over www.theallpapers.com

3 Fig. 3.1 shows a plant, and also a cell from part of the plant.

For Examiner's Use

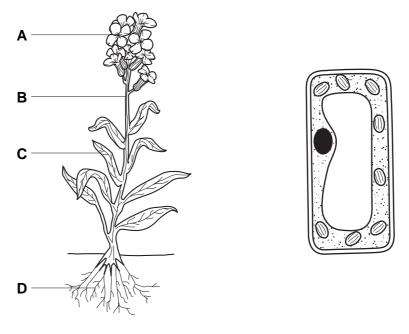


Fig. 3.1

(a) From which part of the plant, A, B, C or D, does the cell come?

[1]
(b) On the diagram of the cell in Fig. 3.1, label the following structures.

Use label lines and the appropriate letters.

P a partially permeable membrane

Q the part of the cell that contains DNA

R a part of the cell that contains a substance whose molecules contain magnesium [3]
(c) When a leaf is tested for starch, it is first boiled in water and then put into hot alcohol.

Explain why these steps are necessary.

boiling in water

putting into hot alcohol

(d) Part A of the plant in Fig. 3.1 is a flower. (i) Is this an insect-pollinated or a wind-pollinated flower? Explain your answer. type of pollination explanation (ii) Some pollen from one of the flowers on this plant is transferred onto the stigma of another flower on the same plant. The male gamete in the pollen fertilises a female gamete in the flower. Is this asexual reproduction or sexual reproduction? Explain your answer. type of reproduction explanation (iii) Explain why a plant breeder may prefer to use an asexual method of propagation of his plants, rather than a sexual method.

4 The apparatus in Fig. 4.1 can be used to study the reaction between potassium and oxygen.

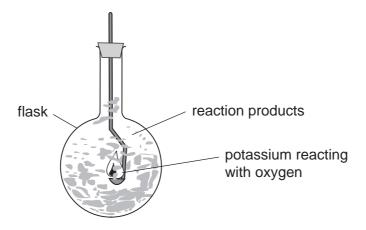


Fig. 4.1

(a)	Suggest willy the hask be	Comes wan	ir during the reaction.	
				[1]
(b)	One of the compounds for	ormed in this	reaction is potassium	oxide.
	The electron configuration below.	ons of a po	otassium atom and ar	n oxygen atom are shown
		K	2.8.8.1	
		0	2.6	
		nges in the ϵ	electron configurations	oxide. In your answer you of these atoms, and deduce

(c)	Wh	other compound formed in the reaction in Fig. 4.1 is potassium peroxide, K_2O en potassium peroxide is added to water the products are potassium hydroxide angen gas.	_
	(i)	A student attempted to work out the balanced equation for this reaction. H attempt is shown below.	is
		$2K_2O_2 + 2H_2O \longrightarrow 2KOH + O_2$	
		His teacher said this attempt was incorrect. Explain why this attempt is incorrect and write down the correct equation.	:t,
			•••
			2]
	(ii)	Describe how the student should test the gas given off to confirm that it is oxygen.	
		[1]
	(iii)	The student found that the pH of the final mixture was 13.	
		Write the formula and charge of the ion present in the mixture which is responsible for this pH value.	е
]	1]

5 A space rocket is launched to the Moon.

For Examiner's Use

(a) After launch, the empty fuel tanks are released and fall back to Earth. As a tank falls, two forces act on it as shown in Fig. 5.1.

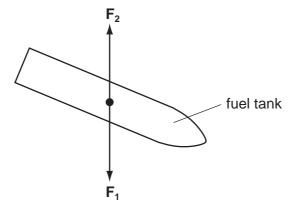


Fig. 5.1

	3.3.	
(i)	Name forces F ₁ and F ₂ .	
	F ₁	
	F ₂	[2]
(ii)	As it falls, the tank accelerates because $\mathbf{F_1}$ is greater than $\mathbf{F_2}$.	
	What will happen to the size of force F ₂ as the tank goes faster?	
		[1]
(iii)	Eventually the two forces will balance each other.	
	How will this affect the speed of the falling tank?	
	Explain your answer.	
		[2]

(b)	The	e rocket travels 400 000 km to the Moon in 80 hours.
	Cal	culate the average speed of the rocket.
	Sta	te the formula that you use and show your working.
		formula used
		working
		[2]
(c)		e of the astronauts on the rocket has a mass of 90 kg. The gravitational field ength of the Moon is about one-sixth that of the Earth.
	Sta	te the differences, if any, between
	(i)	the mass of the astronaut on the Earth and on the Moon,
		[1]
	(ii)	the weight of the astronaut on the Earth and on the Moon.
		[1]

	Tuberculosis (TB) is an infectious disease caused by a bacterium. HIV/AIDS is caused by a virus.						
(a)	Naı	me the cells in the body tha	at help to destroy harmfu	l bacteria and viruses by	/	Use	
	(i)	producing antibodies,					
					[1]		
	(ii)	phagocytosis					
					[1]		
(b)		ole 6.1 shows the percentarid in 2005.	age of people with TB a	and HIV/AIDS in four pa	rts of the		
			Table 6.1				
		part of the world	percentage of people with TB	percentage of people with HIV/AIDS			
		sub-Saharan Africa	0.51	7.2			
		Southeast Asia	0.35	1.1			
		Americas	0.07	0.7	_		
		Europe	0.06	0.5			
	(i) (ii)	Describe any pattern that with HIV/AIDS. The virus that causes AID					
	(,	Explain how this could be			hed in (i)		
		Explain now this could be	·	•	• •		
					[2]		

(6)	injection of weakened TB bacteria.
	Explain how this vaccination could make a person immune to TB.
	[2]

	minium, iron, sodium and chlorine are important elements produced by the chemical ustry.	Exami Us
(a)	State which of the elements above	
	(i) has atoms which are converted into ions by gaining an electron,	
	[1]	
	(ii) has atoms which contain 3 electrons in their outer shells.	
	[1]	
(b)	When chlorine gas is bubbled into a colourless solution of sodium bromide, the solution turns orange.	
	Explain this observation.	
	[2]	

iner's se

(c) Fig. 7.1 shows a blast furnace which is used to convert iron(III) oxide into iron.

For Examiner's Use

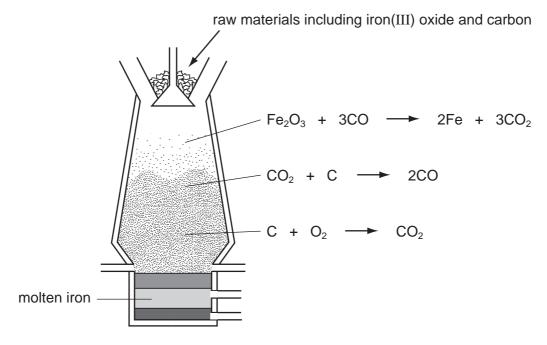


Fig. 7.1

(i) State two substances, shown in Fig. 7.1, which are reduced.

The balanced equations of the three main chemical reactions in the blast furnace are shown in Fig. 7.1. Each reaction is a redox reaction.

Explain your answer briefly.

[3]

(ii) Use the relative atomic masses shown on the Periodic Table to calculate the relative formula mass of iron(III) oxide.

Show your working.

[1]

8 A student is having a medical examination.

For Examiner's Use

(a) A dentist checks the student's teeth using a dental mirror. This is shown in Fig. 8.1.

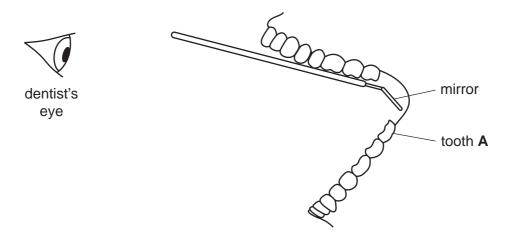


Fig. 8.1

(i) Draw a ray of light from the back of tooth **A** to the dentist's eye to show how the dentist is able to see the back of the tooth.

On the ray, draw arrows showing the direction in which light travels. [3]

(ii) Describe how the dentist could find the density of an irregular object such as an extracted tooth.

(b) The doctor wants to use a small torch to look down the student's throat. When he switches the torch on, it does not work.

For Examiner's Use

Fig. 8.2 shows the circuit diagram for the torch.

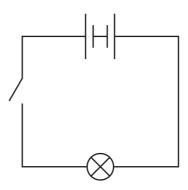


Fig. 8.2

(i)	Explain what is wrong with the torch.	
		[1]

(ii) Draw the correct circuit diagram.

[1]

BLANK PAGE

9 Fig. 9.1 shows part of the carbon cycle.

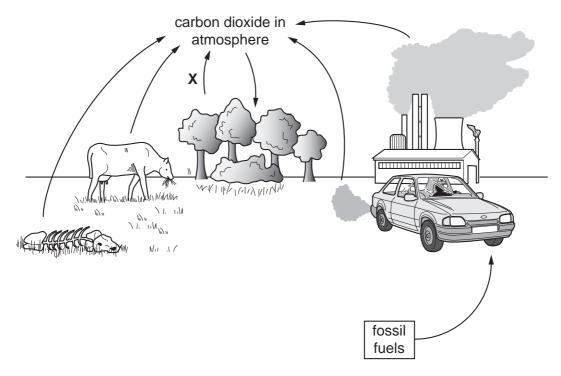


Fig. 9.1

(a)	Name the process labelled X on Fig. 9.1.	
		[1]
(b)	Explain how carbon dioxide is returned to the air from the bodies of dead organisms.	
		[2]

(C)	Describe how fossil fuels are formed.
	101

(d) Fossil fuels are burned in cars, trucks and other vehicles.

Fig. 9.2 shows the quantity of sulphur dioxide and nitrogen oxides emitted from vehicles in a European country between 1990 and 2003. Over this period, the country brought in measures to try to decrease the emissions of these gases.

The number of vehicles using the roads increased over this time period.

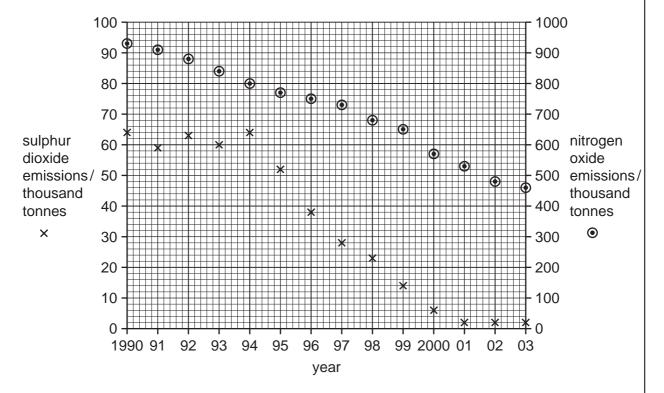


Fig. 9.2

(i)	Suggest a reason for the trend in sulphur dioxide emissions between 1990 and 2003.	Exa
	[1]	
(ii)	Catalytic converters were introduced into this country in 1993. They are fitted onto car exhaust systems, and they contain catalysts that cause nitrogen oxide to be reduced to nitrogen.	
	Suggest two reasons why nitrogen oxides had not been completely eliminated from car exhaust gases by 2003.	
	1.	
	2	
	[2]	
(iii)	Explain how emissions of sulphur dioxide and nitrogen oxides can harm living organisms.	
	[3]	

BLANK PAGE

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	4 Helium 2	20 Neon 10 AF Argon	84 Krypton 36 131 Xe Xenon 54	Radon 86	Luteritum 71 Lawrencium C.C.
	=>		19 Fluorine 9 35.5 C1	80 Brownine 35 127 I lodine 53	At Astatine 85	Yb Ytterblum 70 Nobellum
	I		16 Oxygen 8 32 S Suphur	Se Setenium 34 128 Te Tellurium 52	Polonium 84	Tm Thullum 69 Mendelevium
	>		14 Nitrogen 7 31 9 Phosphorus 15	75	209 Bi Bismuth 83	Erbium 68 Fm Fermium
	2		Carbon 6 Carbon 8 Si Siicon 14	73 Ge Germanium 32 119 Sn Tin 50	207 Pb Lead 82	Homium 67 Es
	=		11 B Boron 5 27 A1 Auminium 13	70 Ga Sallum 31 115 In Indium 49	204 T 1 Thallum 81	Dy Dysprosium 66 Californium
				65 Znc 30 Znc 30 Cd Cadmium 48	Hg Mercury 80	Terbium 65 BK
				64 Cu 29 108 Ag Silver	197 Au Gold 79	Gd Gadolinium 64 Cm Curium
Group				59 Nickel 28 106 Pd Palladium 46	195 Petinum 78	Eu Europium 63 Am Americium
Ş				59 Cobalt 27 103 Rh Rhodium 45	192 Ir	Samarium 62 Pu
		1 Hydrogen		56 Fe Iron 26 Iron 101 Ru Ruthenium 44	190 Osmium 76	Pm Promethium 61 Np Neptunium
				Mn Manganese 25 TC Technetium 43	186 Ren Rhenium 75	Neodymium 60 238 Uranium
				Chromium 24 Chromium 24 Mo Moybdenum 42	184 W Tungsten 74	Praseodymium 59 Paa Protectinium
				Vanadium 23 93 Nb Niobium 41	181 Ta Tantalum 73	140 Ce Cerium 58 232 Th Thorium
				48 Titanium 22 91 Zr Zirconium 40	178 # Hafnium 72	nic mass bol nic) number
				Scandium 21 89 Y	139 Lanthanum 57 227 AC Acthium 89	oid series I series a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		Beryllium 4 24 Magnesium 12	Calcium 20 88 88 Strontium 38	137 Barium 56 226 Radium Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series a a relative a Key
	_		Lithium 3 23 23 Na Sodium 11	39 K Potassium 19 85 R R R R Rubidium 37	Caesium 55 Francium 87	*58-71 Ls 190-103 , Key

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).