UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the NOVEMBER 2004 question paper

0653 COMBINED SCIENCE

0653/02

Paper 2 (Core Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 0653 (Combined Science) in the November 2004 examination.

	maximum	minimum mark required for grade:				
	mark available	А	С	Е	F	
Component 2	80	N/A	42	24	16	

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.

November 2004

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0653/02

COMBINED SCIENCE Paper 2 (Core Theory)

1 (a) (i) smaller (than white cells)/no nucleus/bi-concave/doughnut shaped 1 (a) (i) smaller (than white cells)/no nucleus/bi-concave/doughnut shaped (ii) reference to clotting (b) (i) O on capillaries at top of diagram A on vein from bottom of diagram up to heart (ii) (iii) heart pumps blood so it travels faster to body cells at higher pressure (iii) haemoglobin transports oxygen/CO decreases oxygen transport so body cells cannot respire as quickly leads to shortage of energy leads to shortage of energy max Tota 2 (a) (i) four (iii) covalent (iii) atom cannot be broken down/molecule can be broken down (into atoms)/molecules are made from atoms (b) (i) gasoline (ii) fuel for vehicles/petrol engines (c) (i) moomer(s) (ii) lower mass/density/not brittle/reasonable reference to safety (iii) carbon hydrogen polymer is hydrocarbon because complete combustion gives only CO ₂ and H ₂ O max		Page 1		Mark Scheme IGCSE – NOVEMBER 2004	Syllabus 0653	Paper 2	
 (b) (i) O on capillaries at top of diagram A on vein from bottom of diagram up to heart (ii) heart pumps blood so it travels faster to body cells at higher pressure (iii) haernoglobin transports oxygen/CO decreases oxygen transport so body cells cannot respire as quickly leads to shortage of energy max Tota (i) four (ii) covalent (ii) atom cannot be broken down/molecule can be broken down (into atoms)/molecules are made from atoms (b) (i) gasoline (ii) fue! for vehicles/petrol engines (c) (i) monomer(s) (ii) lower mass/density/not brittle/reasonable reference to safety (ii) carbon hydrogen polymer is hydrocarbon because complete combustion gives only CO₂ and H₂O max Tota 3 (a) regular arrangement touching (b) (volume =) 24 (cm³) density = mass + volume = 212 + 24/8.83 (b) (c) enservice and enserv	1	l (a) (i)		smaller (than white cells)/no nucleus/bi-concave/doug	ghnut shape	ed [1]	
 A on vein from bottom of diagram up to heart (ii) heart pumps blood so it travels faster to body cells at higher pressure baemoglobin transports oxygen/CO decreases oxygen transport so body cells cannot respire as quickly leads to shortage of energy max 2 (a) (i) four (ii) atom cannot be broken down/molecule can be broken down (into atoms)/molecules are made from atoms (ii) fuel for vehicles/petrol engines (ii) gasoline (iii) four entosic/density/not brittle/reasonable reference to safety (iii) carbon			(ii)	reference to clotting		[1]	
 (ii) heart pumps blood so it travels faster to body cells at higher pressure max (iii) haemoglobin transports oxygen/CO decreases oxygen transport so body cells cannot respire as quickly leads to shortage of energy max 2 (a) (i) four (ii) covalent (iii) atom cannot be broken down/molecule can be broken down (into atoms)/molecules are made from atoms (b) (i) gasoline (ii) fuel for vehicles/petrol engines (c) (i) monomer(s) (ii) lower mass/density/not brittle/reasonable reference to safety (iii) carbon hydrogen polymer is hydrocarbon because complete combustion gives only CO₂ and H₂O Total 3 (a) regular arrangement touching (b) (volume =) 24 (cm³) density = mass + volume = 212 + 24/8.83 		(b)	(i)	O on capillaries at top of diagram			
 so it travels faster to body cells at higher pressure (iii) haemoglobin transports oxygen/CO decreases oxygen transport so body cells cannot respire as quickly				A on vein from bottom of diagram up to heart			
 at higher pressure at higher pressure (iii) haemoglobin transports oxygen/CO decreases oxygen transport so body cells cannot respire as quickly leads to shortage of energy max tota (a) (i) four (ii) covalent (iii) atom cannot be broken down/molecule can be broken down (into atoms)/molecules are made from atoms (b) (i) gasoline (ii) fuel for vehicles/petrol engines (c) (i) monomer(s) (ii) lower mass/density/not brittle/reasonable reference to safety (iii) carbon hydrogen polymer is hydrocarbon because complete combustion gives only CO₂ and H₂O Total 3 (a) regular arrangement touching (b) (volume =) 24 (cm³) density = mass + volume = 212 + 24/8.83 			(ii)	heart pumps blood			
 (iii) haemoglobin transports oxygen/CO decreases oxygen transport so body cells cannot respire as quickly leads to shortage of energy max Tota 2 (a) (i) four (ii) covalent (iii) atom cannot be broken down/molecule can be broken down (into atoms)/molecules are made from atoms (b) (i) gasoline (ii) fuel for vehicles/petrol engines (c) (i) monomer(s) (ii) lower mass/density/not brittle/reasonable reference to safety (iii) carbon hydrogen polymer is hydrocarbon because complete combustion gives only CO₂ and H₂O max Total 3 (a) regular arrangement touching (b) (volume =) 24 (cm³) density = mass + volume = 212 + 24/8.83 				so it travels faster to body cells			
 so body cells cannot respire as quickly leads to shortage of energy Tota 2 (a) (i) four (ii) covalent (iii) atom cannot be broken down/molecule can be broken down (into atoms)/molecules are made from atoms (b) (i) gasoline (ii) fuel for vehicles/petrol engines (c) (i) monomer(s) (iii) lower mass/density/not brittle/reasonable reference to safety (iii) carbon				at higher pressure		max [2]	
leads to shortage of energy max Tota 2 (a) (i) four (ii) covalent (iii) atom cannot be broken down/molecule can be broken down (into atoms)/molecules are made from atoms (b) (i) gasoline (ii) fuel for vehicles/petrol engines (c) (i) monomer(s) (ii) lower mass/density/not brittle/reasonable reference to safety (iii) carbon hydrogen polymer is hydrocarbon max because complete combustion gives only CO ₂ and H ₂ O max Total 3 (a) regular arrangement touching (b) (volume =) 24 (cm ³) density = mass + volume = 212 + 24/8.83			(iii)	haemoglobin transports oxygen/CO decreases oxyger	n transport		
2 (a) (i) four (ii) covalent (iii) atom cannot be broken down/molecule can be broken down (into atoms)/molecules are made from atoms (b) (i) gasoline (ii) fuel for vehicles/petrol engines (c) (i) monomer(s) (ii) lower mass/density/not brittle/reasonable reference to safety (iii) lower mass/density/not brittle/reasonable reference to safety (iii) carbon hydrogen polymer is hydrocarbon because complete combustion gives only CO ₂ and H ₂ O max 3 (a) regular arrangement touching touching (b) (volume =) 24 (cm ³) density = mass + volume = 212 + 24/8.83 density = mass + volume = 212 + 24/8.83				so body cells cannot respire as quickly			
2 (a) (i) four (ii) covalent (iii) atom cannot be broken down/molecule can be broken down (into atoms)/molecules are made from atoms (b) (i) gasoline (iii) fuel for vehicles/petrol engines (c) (i) monomer(s) (ii) lower mass/density/not brittle/reasonable reference to safety (iii) carbon hydrogen polymer is hydrocarbon max Total 3 (a) regutar arrangement touching (b) (volume =) 24 (cm ³) density = mass + volume = 212 + 24/8.83				leads to shortage of energy		max [2]	
 (ii) covalent (iii) atom cannot be broken down/molecule can be broken down (into atoms)/molecules are made from atoms (b) (i) gasoline (ii) <u>fuel</u> for vehicles/petrol engines (c) (i) monomer(s) (ii) lower mass/density/not brittle/reasonable reference to safety (iii) carbon						Total [8]	
 (iii) atom cannot be broken down/molecule can be broken down (into atoms)/molecules are made from atoms (b) (i) gasoline (ii) fuel for vehicles/petrol engines (c) (i) monomer(s) (ii) lower mass/density/not brittle/reasonable reference to safety (iii) carbon hydrogen polymer is hydrocarbon because complete combustion gives only CO₂ and H₂O 3 (a) regular arrangement touching (b) (volume =) 24 (cm³) density = mass ÷ volume = 212 ÷ 24/8.83 	2	(a)	(i)	four		[1]	
 atoms)/molecules are made from atoms (b) (i) gasoline (ii) <u>fuel</u> for vehicles/petrol engines (c) (i) monomer(s) (ii) lower mass/density/not brittle/reasonable reference to safety (iii) carbon hydrogen polymer is hydrocarbon because complete combustion gives only CO₂ and H₂O 3 (a) regular arrangement touching (b) (volume =) 24 (cm³) density = mass + volume = 212 + 24/8.83 			(ii)	covalent		[1]	
 (ii) fuel for vehicles/petrol engines (i) monomer(s) (ii) lower mass/density/not brittle/reasonable reference to safety (iii) carbon hydrogen polymer is hydrocarbon because complete combustion gives only CO₂ and H₂O max Total 3 (a) regular arrangement touching (b) (volume =) 24 (cm³) density = mass ÷ volume = 212 ÷ 24/8.83 			(iii)		down (into	[1]	
 (c) (i) monomer(s) (ii) lower mass/density/not brittle/reasonable reference to safety (iii) carbon hydrogen polymer is hydrocarbon because complete combustion gives only CO₂ and H₂O Total 3 (a) regular arrangement touching (b) (volume =) 24 (cm³) density = mass + volume = 212 + 24/8.83 		(b)	(i)	gasoline		[1]	
 (ii) lower mass/density/not brittle/reasonable reference to safety (iii) carbon hydrogen polymer is hydrocarbon because complete combustion gives only CO₂ and H₂O 3 (a) regular arrangement touching (b) (volume =) 24 (cm³) density = mass ÷ volume = 212 ÷ 24/8.83 			(ii)	fuel for vehicles/petrol engines		[1]	
(iii) carbon hydrogen polymer is hydrocarbon because complete combustion gives only CO ₂ and H ₂ O Total 3 (a) regular arrangement touching (b) (volume =) 24 (cm ³) density = mass \neq volume = 212 \neq 24/8.83		(c)	(i)	monomer(s)		[1]	
 hydrogen polymer is hydrocarbon because complete combustion gives only CO₂ and H₂O Total 3 (a) regular arrangement touching (b) (volume =) 24 (cm³) density = mass ÷ volume = 212 ÷ 24/8.83 			(ii)	lower mass/density/not brittle/reasonable reference to	safety	[1]	
polymer is hydrocarbon because complete combustion gives only CO ₂ and H ₂ O max Total 3 (a) regular arrangement touching (b) (volume =) 24 (cm ³) density = mass ÷ volume = 212 ÷ 24/8.83			(iii)	carbon			
because complete combustion gives only CO ₂ and H ₂ O max Total 3 (a) regular arrangement touching (b) (volume =) 24 (cm ³) density = mass ÷ volume = 212 ÷ 24/8.83				hydrogen			
 3 (a) regular arrangement touching (b) (volume =) 24 (cm³) density = mass ÷ volume = 212 ÷ 24/8.83 				polymer is hydrocarbon			
 3 (a) regular arrangement touching (b) (volume =) 24 (cm³) density = mass ÷ volume = 212 ÷ 24/8.83 				because complete combustion gives only CO_2 and H_2	0	max [3]	
touching (b) (volume =) 24 (cm ³) density = mass \div volume = 212 \div 24/8.83						Total [10]	
(b) (volume =) 24 (cm ³) density = mass \div volume = 212 \div 24/8.83	3	(a)	regu	gular arrangement			
density = mass ÷ volume = 212 ÷ 24/8.83			touc	ouching			
		(b)	(volu	lume =) 24 (cm ³)			
g/cm ³				ensity = mass ÷ volume = 212 ÷ 24/8.83			
			g/cm ³			[3]	

© University of Cambridge International Examinations

	Page 2		Mark Scheme IGCSE – NOVEMBER 2004	Syllabus	Paper
				0653	2
	(c)		x = force x distance/or sensible symbols		[0]
	(D		$2 \times 3 = 6.36 (J)$		[2]
	(d)	(grav	(gravitational) potential (energy)		[1]
					Total [8]
4	(a)	Α			
		D			[2]
	(b)	inse	insect attracted to flower by petals/description of petals		
		reference to nectar			
		polle	n attaches to insect's body		
		polle	n deposited on stigma/part E		max [3]
	(c)	fruits	only develop after pollination/fertilisation		
		from	ovaries		
		the more insects, the more pollination			
		a fev	a few insects present even in absence of hives		max [3]
	(d)	add Benedict's solution and heat			
		posit	positive result is red/orange colour		[2]
					Total [10]
5	(a)	(i)	12 electrons		
			arranged 2, 8, 2		[2]
		(ii)	neon		[1]
		(iii)	(unreactive)		
			it is a noble gas/(atoms have) full outer shell		[1]
	(b)	carb	carbon plus copper oxide and lead oxide		[1]
	(c)	(i) sodium ion has one less electron than sodium atom/ equal to electrons but are equal in the atom		n the ion pr	otons not [1]
		(ii)	sodium ion is positive and oxide ion is negative		
			opposite charges attract		[2]
		(iii)	sodium + oxygen \rightarrow sodium oxide		[1]
					Total [9]

© University of Cambridge International Examinations

	Page 3		Mark Scheme	Syllabus	Paper
			IGCSE – NOVEMBER 2004	0653	2
6	(a)	(i)	background radiation		[1]
		(ii)	184		[1]
		(iii)	not all radiation directed towards counter/some absorbed by air		[1]
		(iv)	alpha		[1]
		(v)	gamma it is not stopped by aluminium		[2]
		(vi)	lead shielding use of radiation badges use of tongs use of gloves		max [1]
	(b)	(i)	helium nucleus/description		[1]
		(ii)	deflected by magnetic deflected by electric field stopped by paper positively charged ionising		max [2]
	(c)	(i)	(nucleus) splits/divides		[1]
		(ii)	(nuclei) join together		[1]
			(allow 1 mark if all correct but atoms instead of nuclei)		
					Total [12]
7	(a)	(i)	web shows all four organisms in correct relationship arrows in correct direction		[2]
		(ii)	consumers		[1]
	(b)	(light	ht captured by) chlorophyll/chloroplasts ht used to) combine CO ₂ and H ₂ O ergy contained in glucose/carbohydrate		max [2]
	(c)	relea	k down dead organisms/faeces use nutrients from this process ents recycled		max [2]
	(d)	refer neec dang	rence to high species diversity rence to maintaining habitats d to maintain oxygen production ger of increased global warming/need to use CO ₂ d to avoid soil erosion/flooding		max [2]
					Total [9]

	Page 4		Mark Scheme	Syllabus	Paper	
			IGCSE – NOVEMBER 2004	0653	2	
8	(a)	(i)	cloudy carbon dioxide is produced		[2]	
		(ii)	copper chloride		[1]	
	(b)	(Aysha correct) combustion requires oxygen (and none shown) a complex substance is converted into simpler ones by the action of he			eat max [2]	
	(c)	(unlikely to be white/will be some other colour) copper is a transition metal which have compounds which are usually coloured				
		(allo	w 1 mark for copper carbonate is green)		[2]	
					Total [7]	
9	(a)	(i)	conduction convection		[2]	
		(ii)	the shiny/silvery surface will be a poorer emitter of IR	than dull/b	lack [1]	
		(iii)	reference to insulation shows the rate/reduces efficiency of conduction/conv detail e.g. trapped air is poor conductor and cannot c		max [2]	
	(b)	some	rrectly named region me details about corresponding use g. X-rays looking at bones in the body) [2]			
					Total [7]	