

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME							
CENTRE NUMBER				CANDIDA NUMBER			

COMBINED SCIENCEPaper 3 (Extended)

0653/31

May/June 2011

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 19 printed pages and 1 blank page.

1 Dung beetles live in places where large herbivores, such as elephants, buffalo or cattle, also live. The beetles collect dung produced by the herbivores and make it into a ball, which they roll away and bury.

For Examiner's Use

They lay eggs on the buried ball of dung, so that when their larvae hatch they can feed on the dung. The adults also feed on the dung.

Fig. 1.1 shows a dung beetle rolling a ball of dung.

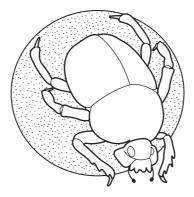


Fig. 1.1

(a) Dung beetles play an important role in the carbon cycle.

	animal dung to become part of a carbohydrate molecule within a plant.	
	101	
	[3]	
b)	The buried dung adds nitrates to the soil.	
	Explain how this can help plants to grow better.	
	[2]	

(c)	Far	mers may use insecticides (pesticides that kill insects) on their land.
	(i)	Explain why farmers use insecticides.
		[2]
	(ii)	Using the information above, explain why using insecticides on land where cattle graze could reduce the growth of grass.
		[2]

The chemical formulae for some compounds (minerals) found in rocks are shown below. $CaMg(CO_3)_2$ dolomite KA*l*Si₃O₈ potassium feldspar NaA*l*Si₃O₈ sodium feldspar CaCO₃ calcite (a) A white powder is known to be either potassium feldspar or sodium feldspar. Describe a test and its results which would enable a chemist to find out which of these minerals is contained in the white powder. **(b)** Calculate the relative formula mass of calcite. Show your working. [1] (c) When dolomite is strongly heated, carbon dioxide gas is given off and a mixture of calcium and magnesium oxides remains. (i) The symbolic equation for this reaction which is shown below is **not** balanced. Balance the equation.

For Examiner's Use

2

 $CaMg(CO_3)_2 \longrightarrow CaO +$

[1]

 $MgO + CO_2$

(ii)	Name the type of chemical reaction in (i) and state the evidence you have used to decide your answer.
	type of reaction
	evidence
	[2]
` '	student adds some water to some calcium oxide. She observes that an exothermic ction occurs and an alkaline solution is formed.
(i)	State the ion whose concentration increases when calcium oxide reacts with water.
	[1]
(ii)	The student then adds dilute hydrochloric acid to the solution from (i).
	Write a word equation for the neutralisation reaction which occurs.
	[2]

3 In an experiment, weights were hung on a spring and the length of the spring measured.

For Examiner's Use

Fig. 3.1 shows a graph of the results.

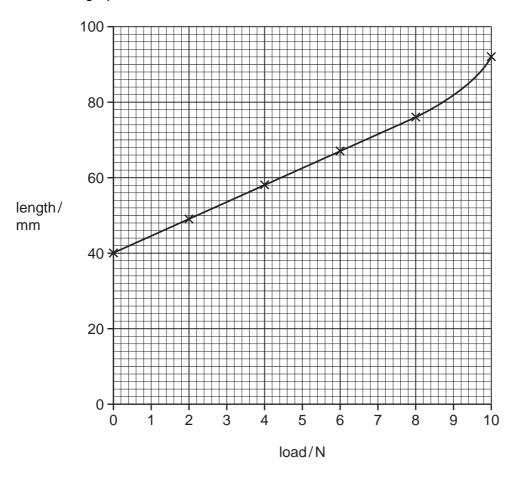


Fig. 3.1

(a) Calculate the extension of the spring when a 4 N load is hung from it. Show your working.

Г	1	1	
- 1	- 1		
 -		-	

(b) Explain the relationship between the load on the spring and the length of the spring when the load is increased from 0 to 10 N.

[3]

(c) Fig. 3.2 shows a wooden bird suspended from an identical spring.

For Examiner's Use

Fig. 3.2

The total length of the spring is 51 mm.

working

(i)	Use the graph	in Fig. 3.1	to find the weig	ht of the bird. S	show your working.

(ii) The density of the wood used to make the bird is 0.8 g/cm³.

Use your answer to (i) to calculate the volume of the bird in cubic centimetres.

The gravitational field strength of the Earth is 10 N/kg.

State any formula that you use and show your working.

formula used

[3]

4 Fig. 4.1 shows a sperm cell.

For Examiner's Use

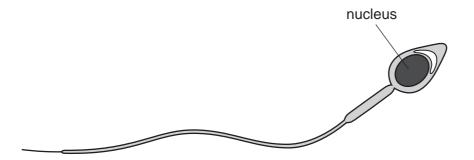


Fig. 4.1

- (a) On Fig. 4.1, use label lines to label and name **two** structures that are found in **all** animal cells.
- (b) Name the organ in which sperm are produced. [1]
- (c) An investigation was carried out into the oxygen use and energy use of sperm while they were at rest and while they were swimming.

For each measurement, the researchers calculated the amount of oxygen and the amount of energy used by 10⁹ (one thousand million) sperm.

The results are shown in Table 4.1.

Table 4.1

	oxygen use/units per 10 ⁹ sperm per hour	energy use/joules per 10 ⁹ sperm per hour
resting sperm	24	46
swimming sperm	83	164

(1)	Suggest why th		tne	oxygen	use	and	energy	use	tor
									[1]

(ii)	Explain why more oxygen is used when the sperm are using more energy.
	[2]
(iii)	Calculate the total power output of a group of 10 ⁹ swimming sperm.
	State the formula that you use and show your working.
	formula
	working
	[3]
(iv)	In order to reach an egg, a human sperm has to swim from the top of the vagina to an oviduct, through a thin layer of liquid.
	Explain how the shape of the sperm, shown in Fig. 4.1, reduces the energy required to swim this distance.
	ro:
	[2]

5	(a)		elear reactors can be used in power stations to produce energy for generating stricity.
		(i)	Suggest one advantage and one disadvantage of generating electricity in this way.
			advantage
			disadvantage
			[2]
		(ii)	Describe what happens to an atom during nuclear fission.
			[1]
		(iii)	Below is a newspaper article written by someone who has a poor understanding of radioactivity.
			There was a leak of radiation from our local nuclear power station yesterday.
			The radiation blew across farmland.
			It emits gamma particles which are harmful to wildlife.
			Write down one mistake reported in the article. Explain why this is a mistake.
			mistake
			explanation
			[2]

(b) A badge made from photographic film can be used to check the exposure of the workers to radiation. A simple badge has two sections **A** and **B** for the detection of beta and gamma radiation.

For Examiner's Use

Fig. 5.1 shows a worker wearing his badge.

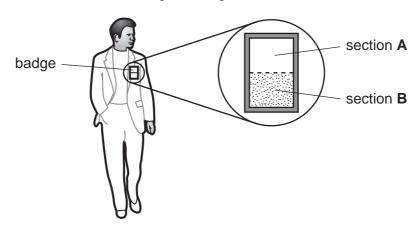


Fig. 5.1

Fig. 5.2 shows the side view through the badge.

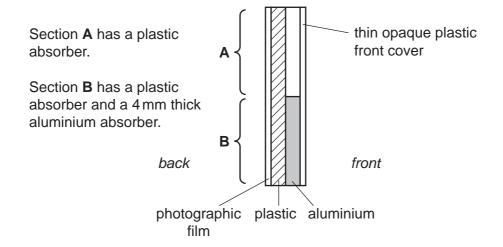


Fig. 5.2

When the photographic film from the badge is developed, it turns black where it has been exposed to radiation.

(i) Complete Table 5.1 to show whether the photographic film will turn black when exposed to beta or gamma radiations.

Table 5.1

radiation	will section A turn black?	will section B turn black?
beta		
gamma	yes	

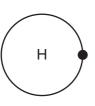
[2]

	(ii)	Explain why the badge can not be used to detect alpha radiation.	For Examiner's Use
		[1]	
(c)		ha, beta and gamma radiations behave differently when they are passed through an ctric field.	
	(i)	Explain why gamma radiation is not deflected.	
	(ii)	Explain why alpha and beta radiation are deflected in opposite directions.	
		[1]	

6 (a) Air is a mixture of elements and compounds. The two main elements in air are nitrogen and oxygen. Nitrogen dioxide, NO₂, is a compound of nitrogen and oxygen.

For Examiner's Use

(i) Complete Table 6.1 by writing **M** in the right hand column if the description refers to a **mixture** of nitrogen and oxygen or **C** if it refers to the **compound**, nitrogen dioxide.


Table 6.1

description	M or C
nitrogen atoms are bonded to oxygen atoms	
relative amounts of nitrogen and oxygen can vary	
little or no energy change when formed from nitrogen and oxygen	
chemical properties are very different from either nitrogen or oxygen	

		[2]
	(ii)	The gases nitrogen and oxygen can be separated by fractional distillation from air which has been cooled and pressurised so that it turns into a liquid.
		Explain briefly how fractional distillation separates nitrogen and oxygen from liquefied air.
		[2]
(b)		ogen and hydrogen can be made to react together to form ammonia, NH ₃ . This ction requires a solid iron catalyst and a high temperature.
		plain, in terms of molecular collisions, why increasing the temperature increases the of reaction.
		[0]
		[2]

(c) The diagrams in Fig. 6.1 show the outer electron shells of atoms of the elements hydrogen and sulfur.

For Examiner's Use

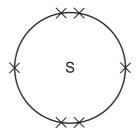


Fig. 6.1

When these atoms bond together, they form a covalent compound whose formula is H_2S .

Use the information shown in these diagrams to explain why the formula of the compound is H_2S .

You may wish to draw a diagram to help your explanation.

•••••
[0]
[4]

The	sme	ell of food cooking can cause a person's salivary glands to secrete saliva.
(a)	(i)	Name this type of response to a stimulus. [1]
	(ii)	Describe how the information about the smell of the food travels from the nose to the salivary glands.
		[3]
(b)	Wh sali	en food has been taken into a person's mouth, it is chewed by teeth and mixed with va.
	Des	scribe how the molar teeth help in the digestion of food.
		[3]
(c)	Sal	iva contains the enzyme amylase.
	Wh	at is an <i>enzyme</i> ?
		[2]

8 A student carried out an experiment to find which substances in the environment caused nails made of mild steel to become rusty.

For Examiner's Use

She selected three identical nails and placed them in sealed test-tubes, ${\bf A}, {\bf B}$ and ${\bf C},$ as shown in Fig. 8.1.

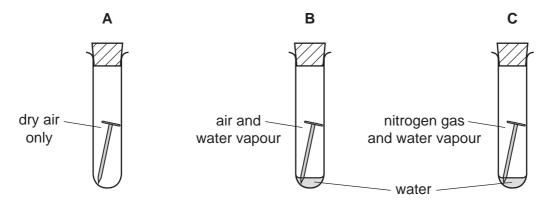


Fig. 8.1

a)	not rust in either of the other two tubes.	became i	rusty, and	explain	why the	nail did
				•••••		[31

- **(b)** Stainless steel does not rust because it is protected by a very thin layer which contains chromium oxide.
 - (i) Chromium oxide contains chromium ions, Cr^{3+} , and oxide ions, O^{2-} .

Deduce the chemical formula of chromium oxide.

Explain how you obtained your answer.

[2

	(ii)	Explain why an oxide ion carries a double negative (2-) electrical charge.
		[2]
(c)		el is used to make the chain of a bicycle. To prevent rusting, the chain is covered by nade of hydrocarbon molecules.
		oil used to protect the bicycle chain contains mainly hydrocarbon molecules which not contain any double bonds.
		steel chain
	(i)	Describe a chemical test and its result that would show whether or not a hydrocarbon oil contained molecules with double bonds.
		[2]
	(ii)	Suggest one property of a hydrocarbon oil which makes it suitable for use as a barrier to prevent rusting.
		[1]

9 The speakers of three MP3 music players are being compared.

For Examiner's Use

(a) The speakers are tested to find the range of frequencies they produce.

Table 9.1 shows the results.

Table 9.1

speaker	range of frequencies/Hz
Α	100 to 10000
В	20 to 25000
С	20 to 40 000

	(i)	What is meant by the term frequency?	
			[1]
	(ii)	Use the information in Table 9.1 to suggest why the music played throug speaker A might not sound as good as the other two speakers.	jh
			[1]
	(iii)	Music played through speakers ${\bf B}$ and ${\bf C}$ sounds the same. Suggest a reason for this.	or
			[1]
b)	Two	o speakers each with a resistance of 8Ω are connected in parallel.	
	Cal	culate their combined resistance.	
	Sta	te the formula that you use and show your working.	
		formula used	
		working	
			[3]

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

1		=							J.B	Group			≡	≥	>	5	=	0
11 12 14 16 16 17 14 16 16 17 14 16 16 17 14 16 16 17 14 16 16 17 14 16 16 17 14 16 16 17 14 16 16 17 17 17 17 17 17	-							T Hydrogen										Helium
Titalium Numbor	o Be												= W	² C	4 Z	9F O	€ 17	20 S
148 51 52 55 55 55 55 55 55	Beryllium 4														Nitrogen	Oxygen 8	Fluorine	Neon 10
48 51 62 65 65 65 65 65 65 65	Mg												27 A1	⊗ ⊠		% 35		Å
1	Magnesium 12	E					•						Aluminium 13	Silicon 14		Sulfur 16		Argon 18
Title Tit	40		45	48	51	52		99	29	59	64	92	70	73		62		84
1			Sc	F	>	ပ်	Mn	Fe	ပိ	Z	Cn	Zn	Ga	Ge	As	Se	Ā	ž
Zr Nbb Mode and M	Calcium 8	2 2	Scandium	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Krypton 36
Zr Nb Mo TC Ru Rh odum Pd Agg Cd In Sn Sb Te Te 2 rccnulum Nicbbum Abbyddenum Tehneluum Ruthenium	88		68	91		96		101	103	106	108	112		119	122	128	127	131
21 circnium Nicbum Nicbum Molybdenum Rechestium Rechestiu	S			Zr	Q N	Mو	ည			Pd	Ag	පි	In		Sb	Те	-	Xe
H	Strontium 38 39		rttrium	Zirconium 40	iobium	Molybdenum 42	Technetium 43			Palladium 46	Silver 47	Cadmium 48	Indium 49	Tin	Antimony 51	Tellurium 52	lodine 53	Xenon 54
Hefritum Tantalum	137		139	178	181	184	186	190	192	195	197	201		207	209			
Patrialium Tantalum Tantalu	Ва		Гa	Ξ	Та		Re	SO.	Ir	₹	Αu	Hg	11	Pb				Ru
140	Barium 56	5	Lanthanum *	Hafnium 72	Tantalum 73	ungsten	Rhenium 75	Osmium 76	lridium 77	Platinum 78		Mercury 80	Thallium 81	Lead 82	Sismuth		Astatine 85	Radon 86
140 141 144 144 150 152 157 159 162 165 167 169 162 165 167 169 162 165 167 169 162 165 167 169 162 165 167 169 162 165 167 169 162 165 167 169 162 165 167 169 162 165 167 169 162 165 167 169 162 165 167 169 162 165 167 169 162 165 167 169 162 165	226		227															
Certum Prosecutiviting Nod Pm SSm and turning Eu Gdd Tb Dy Hohium Fribitum Thulum ymbol Th Prosecutiviting Provincing			Actinium +															
Certification Projection Ned Opportunity Projection Projection <th< td=""><td>- diode date</td><td>1 2</td><td>rion</td><td></td><td>140</td><td>1</td><td>144</td><td></td><td>150</td><td>152</td><td>157</td><td>159</td><td></td><td>165</td><td>167</td><td></td><td>173</td><td>175</td></th<>	- diode date	1 2	rion		140	1	144		150	152	157	159		165	167		173	175
SS SS SS SS SS SS SS S	190-103 Actinoid series	Seri	es es		Serium Cerium	Pr Praseodymium	Neodymium					Terbium		H olmium	Erbium	T m	Yb	Lutetium
232 Th Pa U Np Put online American Contam Bk Cf Es Fm Md 100 101 121 132 14 135 14 135 14 135 100 101 <td></td> <td></td> <td></td> <td></td> <td>58</td> <td>- 69</td> <td>09</td> <td></td> <td></td> <td></td> <td></td> <td>65</td> <td></td> <td>29</td> <td>89</td> <td></td> <td>20</td> <td>71</td>					58	- 69	09					65		29	89		20	71
The Para Usarium Nepturium Putorium Protactinium Protacti	a a = re	a = re	lative aton	nic mass														
Thorium Protactinium Uranium Neptunium Putonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium 60 91 92 93 94 95 96 97 98 99 99 100 101	× ×	×	atomic symi	lod		Ьа	-	ď			CB	BK	ర	Es	Fm	Md	Š	۲
	d = q	d = q	roton (atom	nic) number		Protactinium 91	Uranium 92	Neptunium 93			Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.