Centre Number	Candidate Number	Name

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

COMBINED SCIENCE

0653/02

Paper 2 Core

May/June 2006

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

Do not use staples, paper clips, highlighters, glue or correction fluid.

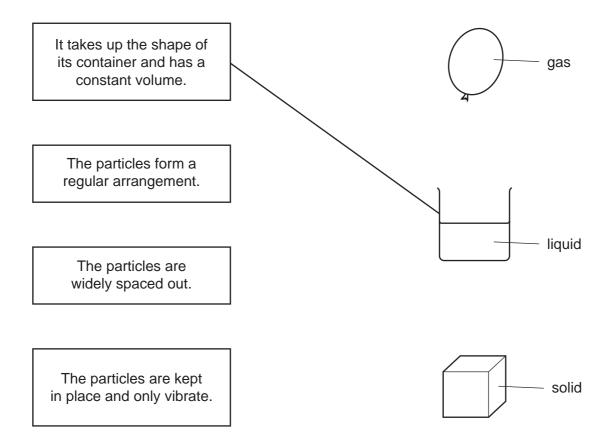
Answer all questions.

You may use a pencil for any diagrams, graphs, tables or rough working.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.


For Exam	niner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

Ear Eveniner's Hee

This document consists of 17 printed pages and 3 blank pages.

1 (a) Each box below contains a description of a solid, a liquid or a gas.

Join each box to the correct diagram. One has been done for you.

[2]

(b) A student sets up the apparatus shown in Fig. 1.1. He wants to use this apparatus to detect thermal radiation.

Fig. 1.1

(i)	Describe what the student would observe when the flask coated with black pair exposed to a source of thermal radiation.	nt is
		[1]
(ii)	Explain the observation in (i) in terms of water particles.	
		[3]
iii)	Suggest why the flask is coated with black paint.	
		[1]

2 Fig. 2.1 shows a fetus developing in the uterus.

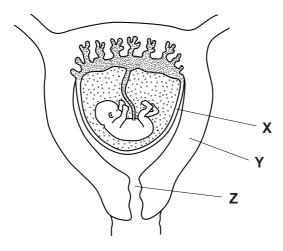


Fig. 2.1

[3]
[3]

- **3 (a)** Table 3.1 shows some information about the elements in Group VII of the Periodic Table. Use the Periodic Table on page 20 to help you with this question.
 - (i) Complete the table.

Table 3.1

Period in which the element is found	symbol	physical state at 25 °C
	Cl	
	Br	
	I	

[2]

			[2]
	(ii)	Fluorine is the Group VII element in Period 2. Suggest the physical state of fluorine at 25 °C.	
			[1]
(b)		mine exists as diatomic molecules, Br_2 . Bromine molecules react with magnesims to form magnesium bromide.	um
	(i)	State the type of chemical bonding in bromine molecules.	
			[1]
	(ii)	The formula of magnesium bromide is MgBr ₂ . Explain what is meant by this formula.	
			[1]
(c)	(i)	State one element which is often added to water intended for drinking.	
			[1]
	(ii)	Suggest and explain what might happen if the element you have named in (i) we not added to water intended for drinking.	/as
			••••
			[2]

4 (a) A radioactive tracer can be used to detect leaks in water pipes.

The tracer is placed in the water flowing through the pipe and a radiation detector is used to check for radiation coming from water leaking out of the pipe.

	(i)	Suggest a suitable instrument for detecting the radiation.	
			[1]
	(ii)	State two precautions which should be taken when handling and storing radioactive tracer.	the
		1.	
		2.	[2]
(b)	Bet	a-radiation is one form of ionising radiation.	
	(i)	Explain why beta-radiation is said to be ionising.	
			[2]
	(ii)	Explain why ionising radiation can be harmful to humans.	
			[2]

` '	nplete the flow chart by filling in the missing words.
	During nuclear fission energy is released.
	<u></u>
	This energy is used to change water into
	This causes a to turn which then turns a generator.
	[3]
(d) (i)	The voltage of the electricity generated is increased using transformers for transmission through power lines to the users.
	Explain why this is done.
	[2]
(ii)	The electrical supply to a house is at a voltage of 220 V. An electric kettle is plugged into the supply. The current flowing through the heating element of the kettle is 10 A.
	Calculate the resistance of the heating element.
	Show your working and state the formula that you use.
	formula used
	working
	ohms [2]

- 5 (a) The list below contains descriptions of some different parts of cells.
 - A contains genes made of DNA
 - **B** controls what enters and leaves the cell
 - **C** is fully permeable

Write the **letter** or **letters** of the descriptions that fit each of these parts of cells. Each part may have one letter, two letters or no letters at all.

nucleus		
cell wall		
chloroplast		
cell surface	membrane	 [3]

(b) Fig. 5.1 shows a cell from a plant root.

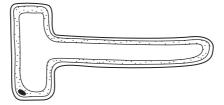
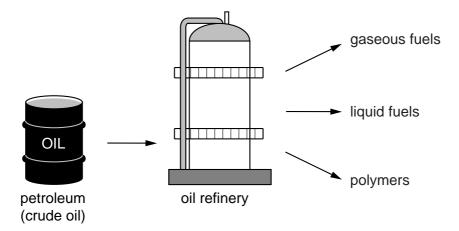


Fig. 5.1


This cell takes up water from the soil.

The water is than carried up to the leaves in the xylem vessels.

(i)	Name the type of cell in Fig. 5.1.	
		[1]
(ii)	Explain how this cell is adapted for its function.	
		[1]

(iii)	In the leaves, a small amount of the water is used for photosynthesis. Write the word equation for photosynthesis.	
		[2]
(iv)	What happens to most of the water after it has travelled into the leaves?	
		[1]

6 Petroleum (crude oil) provides many important products including fuels and polymers.

(a)	Name	the	two	main	elements	which	are	always	found	combined	together	in	fuels
	obtaine	ed fr	om p	etroleu	ım.								

[2	1
	J

- (b) Butane is a gaseous fuel obtained from petroleum.
 - (i) State **one** form of energy that is transferred to the surroundings when butane is oxidised.

F4.	
11	ı
ъ.	J

(ii) Name one product that is formed when butane is completely oxidised.

[1	1
 ь.	-

(c) Table 6.1 shows the total number of atoms which are combined in molecules of three compounds A, B and C.

Table 6.1

compound	Α	В	С
number of atoms in one molecule	60 000	11	26

Suggest and explain which one of these compounds is a polymer.	
	••••
	[2]

` '	Compounds containing the element sulphur are usually removed from fuels obtained rom petroleum. The sulphur is collected and used to make sulphuric acid.									
(i)	State the number of sulphur atoms in one molecule of sulphuric acid.									
	[1]									
(ii) Explain why the removal of sulphur compounds from fuel reduces er damage.										
	[3]									

7 Fig. 7.1 shows sugar cane growing in Fiji.

Fig. 7.1

(a)) In Fiji, much of the land is hilly. It often rains very hard.						
	With reference to Fig. 7.1, explain how the fields of sugar cane can help to reduce so erosion.	oil					
	[2	2]					
(b)	Would a field of sugar cane have a low species diversity or a high species diversity? Explain your answer.						
	ro	 21					
	[2	-]					

(c)		Sugar cane is used to produce sugar, which can be used in cooking. A man eats a cake containing sugar.						
	(i)	Describe how the sugar is absorbed into his blood.						
		[2]						
	(ii)	Explain how his blood sugar level will be prevented from rising too high after he has eaten the cake.						
		[3]						
((iii)	Explain why he would feel tired and ill if his blood sugar level dropped very low.						
		[0]						

- 8 The element iron is extracted from iron ore, which is a rock found in the Earth's crust.
 - (a) The main iron compound in iron ore is iron oxide. When iron oxide reacts with carbon monoxide, iron is produced. The word equation for this reaction is shown below.

iron oxide + carbon monoxide → iron + carbon dioxide

State one difference between an element such as iron and a compound such a iron oxide.
[1
The reaction shown in (a) is an example of oxidation and reduction.
State and explain briefly which substance has been reduced in this reaction.

(b) Fig. 8.1 shows a diagram of a car.

(i)

(ii)

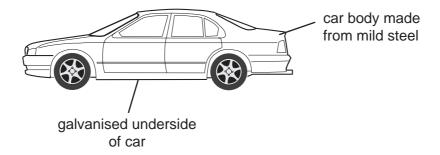


Fig. 8.1

Mild steel is an alloy containing a large amount of iron.

(i) Name an element, other than iron, which is present in mild steel.

[1]

(ii)	The steel on the underside of the car is galvanised by coating it with a layer of zing. This protects the steel from rusting.					
	Suggest how this prevents the steel from rusting.					
	[3]					

(c) Fig. 8.2 shows a test-tube containing a small piece of galvanised steel reacting in sulphuric acid.

Fig. 8.2

Suggest the names of two salts which will remain in the solution in the test-tube when all of the galvanised steel has reacted.

1.	
2.	[2

9 (a) An athlete takes part in a race. His performance is shown on the speed–time graph in Fig. 9.1.

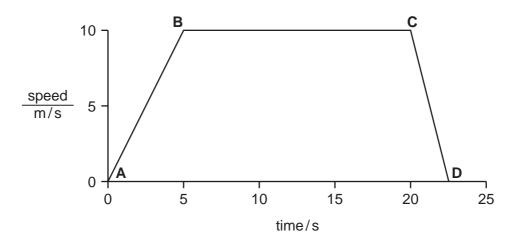


Fig. 9.1

Use the graph to describe the motion of the athlete between

- (i) **A** and **B**,
- (ii) B and C,

(b) Calculate the distance travelled between 5 seconds and 20 seconds.

Show your working and state the formula that you use.

formula used

working

_____ m [2]

BLANK PAGE

BLANK PAGE

BLANK PAGE

Copyright Acknowledgements:

Question 7

© John Mead/Science Photo Library.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET
The Periodic Table of the Elements

		0	4 He ium	20 N Neon	40 Ar Argon	84 Kr Krypton	131 Xe Xenon 54	Rn Radon 86	
		IIN	N	19 Huorine 9		80 Br Bromine 35		At Astatine 85	
		I		16 Oxygen	32 Sulphur	79 Se Selenium 34	128 Te Tellurium 52	Po Polonium 84	
		>		14 N itrogen 7	31 P Phosphorus 15	75 AS Arsenic		209 Bi Bismuth	
		N		12 C Carbon	28 Si Silicon	73 Ge Germanium	119 Sn Tn	207 Pb Lead 82	
				11 Boron 5	_	70 Ga Gallium 31	115 In Indium	204 T 1 Thallium	
2						65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80	
						64 C opper 29	47	197 Au Gold 79	
200	Group					59 Ni Nickel 28			
200	ō			n		59 Co Cobatt	103 Rh Rhodium 45	192 Ir Iridium 77	
2			T Hydrogen			56 Fe Iron 26	Ruthenium 44	190 OS Osmium 76	
						55 Wn Manganese 25	Tc Technetium 43	186 Re Rhenium 75	
						52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74	
						51 Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73	
						48 Ti Titanium 22	91 Zr Zirconium 40	178 #f Hafnium 72	
						Sc Scandium 21	89 Y Yttrium 39	139 La Lanthanum 57 *	AC Actinium 89
		=		9 Be	24 Mg Magnesium	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88
		_		7 L ithium	23 Na Sodium	39 K Potassium	Rb Rubidium 37	133 Cs Caesium 55	Fr Francium 87

140	Pm Sm Promethium Samanium 61		!							
Ce Pr Nd Cerium Praseodymium Neodymium F 58 59 60 61 tomic mass 232 238 61			157		162	165		169	173	175
Cerium Praseodymium Neodymium F 58 60 60 61 61 61 62 232 238			р <u>ө</u>	Q L	ò	운	ம்	Ε	Υp	Ľ
232		ium Europium 63	Gadolinium 64	99	Dysprosium 66	Holmium 67	68	Thulium 69	Ytterbium 70	Lutetium 71
Pa	Np		Cm	Bk	ర	Es	Fn	Md	9	۲
= proton (atomic) number 90 Thorium Protactinium Uranium Nept. 91 92 93	Neptunium Plutonium 93 94	um Americium 95	96	Berkelium 97		Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

а **×**

Key

*58-71 Lanthanoid series 90-103 Actinoid series