

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER		CANDIDATE NUMBER
PHYSICAL SCI	ENCE	0652/22
Paper 2 (Core)		October/November 2012
		1 hour 15 minutes
Candidates ans	wer on the Question Paper.	
No Additional M	laterials are required.	
READ THESE I	NSTRUCTIONS FIRST	

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

For Examiner's Use Answer all questions. A copy of the Periodic Table is printed on page 16. 1 At the end of the examination, fasten all your work securely together. 2 The number of marks is given in brackets [] at the end of each question or part 3 question. 4 5 6 7 8 9 10

This document consists of 16 printed pages.

UNIVERSITY of CAMBRIDGE International Examinations

[Turn over

Total

1	Fig	. 1.1	shows an uncalibrated liquid-in-glass thermometer.	For
			liquid capillary tube	Examiner's Use
			Fig. 1.1	
	(a)	(i)	Name a suitable liquid to use in the thermometer.	
			[1]	
		(ii)	State the physical property of the liquid on which the operation of the thermometer depends.	
			[1]	
	(b)	(i)	Explain what is meant by a <i>fixed point</i> .	
			[2]	
		(ii)	What are the values of the fixed points on the Celsius temperature scale?	
			upper fixed point	
			lower fixed point [2]	
	(c)	The	e thermometer is to be calibrated.	
		The	e two fixed points are marked on the thermometer.	
		Des	scribe the remaining stages in calibrating the thermometer.	
			[2]	
			·	

- Chlorine is a member of Group VII of the Periodic Table. 2 Examiner's (a) (i) State the name given to Group VII elements. [1] (ii) Name a Group VII element which is less reactive than chlorine. [1] (iii) Name the Group I element which is in the same Period as chlorine. [1]
 - (b) Complete Table 2.1 by giving the name and chemical formula of an ionic and a covalent compound of chlorine.

Table 2.1

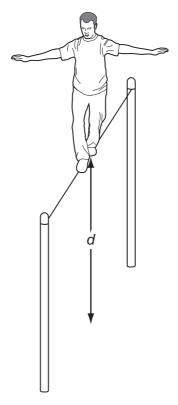
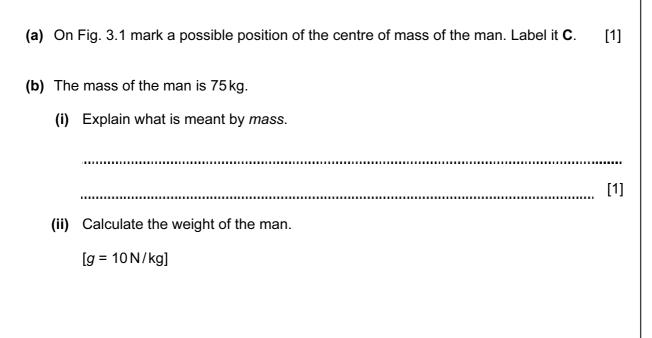
compound	name	formula
ionic		
covalent		

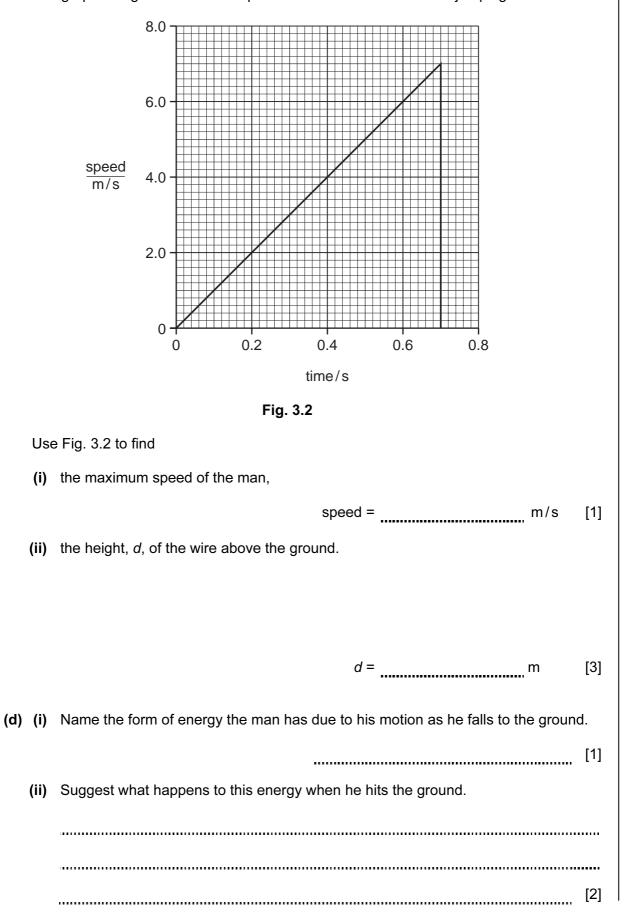
[4]

For

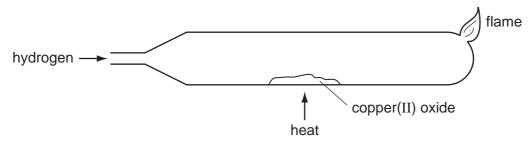
Use

3 Fig. 3.1 shows a man balancing on a tightrope.


Fig. 3.1

weight = [2]


(c) The man jumps off the tightrope.

The graph in Fig. 3.2 shows his speed in a vertical direction after jumping.

For Examiner's Use

Fig. 4.1 shows apparatus used to react copper(II) oxide with hydrogen. 4

(a) (i) Copper(II) oxide is black.

State the colour change you would see when copper(II) oxide is reduced to copper by hydrogen.

[1]

- (ii) Write a balanced equation for this reaction.
- (iii) Explain what this reaction shows about the relative reactivity of copper and of hydrogen.

_____ [1]

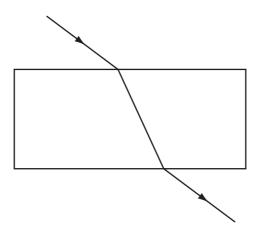
(b) Describe how you could show that carbon (charcoal) is more reactive than copper and less reactive than magnesium.

[3]

For Examiner's Use

[1]

Ammonium sulfate, (NH₄)₂SO₄, and ammonium nitrate, NH₄NO₃, are important nitrogen-containing fertilisers. (a) Name two substances which react together to make ammonium nitrate. 1 2 [2] (b) Calculate the relative molecular mass of ammonium sulfate. [Relative atomic masses: Ar: H,1; N,14; O,16; S,32.] [2] answer (c) Show by calculation that there is 35% nitrogen by mass in ammonium nitrate, NH₄NO₃. [Relative molecular mass of ammonium nitrate is 80] [2] (d) Ammonium sulfate contains less nitrogen by mass than ammonium nitrate. Suggest why ammonium sulfate is sometimes preferred as a fertiliser. [1]

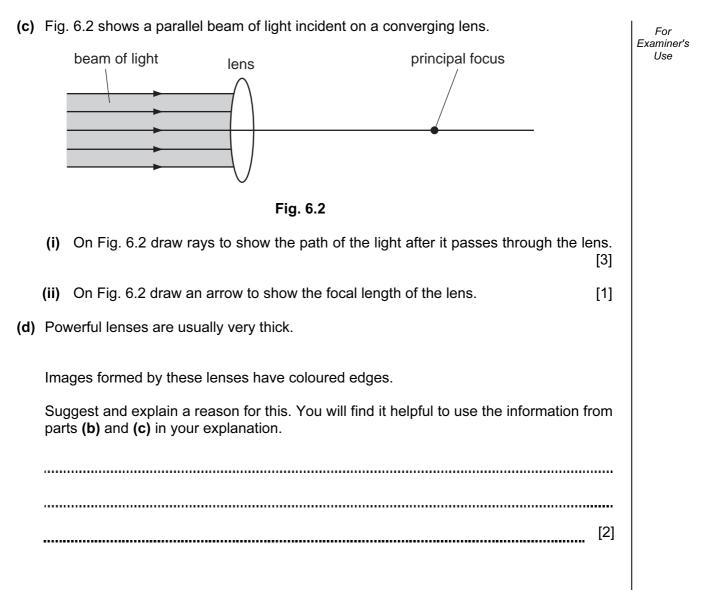

5

[Turn over www.theallpapers.com

For

Examiner's Use **6** Fig. 6.1 shows the refraction of red light as it passes through a parallel sided glass block.

For Examiner's Use



- (a) On Fig. 6.1 mark
 - (i) an angle of incidence and label it i, [1]
 - (ii) an angle of refraction and label it r. [1]
- (b) Blue light refracts more than red light.

Blue light is shone along the same incident path as the red light.

On Fig. 6.1, draw the path of the blue light as it passes through the block and emerges into the air. [2]

7 Danielle is investigating the resistance of a length of constantan wire. For Examiner's Use She builds the circuit shown in Fig. 7.1. X constantan wire Fig. 7.1 (a) (i) Name the component labelled X. [1] (ii) Explain the use of this component in the circuit.[1] (iii) On Fig. 7.1, show how Danielle should connect a meter to measure the potential difference across the wire. [2] (b) When the potential difference across the constantan wire is 4.5 V, the reading on the ammeter is 0.12A. Calculate the resistance of the constantan wire. resistance = _____ unit _____ [3]

(c)		nielle connects a second identical constantan wire in parallel with the original wire.	For Examiner's Use
	Sta	te how	036
	(i)	the total resistance in the circuit changes,	
		[1]	
	(ii)	the reading on the ammeter changes.	
		[1]	
(d)		nird piece of constantan wire has the same length as the original wire but has a ler diameter.	
	Sta wire	te how the resistance of the third wire compares with the resistance of the original e.	
	Giv	e a reason for your answer.	
		[2]	

8 Fig. 8.1 shows apparatus used in an experiment to react hydrochloric acid with excess calcium carbonate to produce carbon dioxide.

12

For Examiner's Use

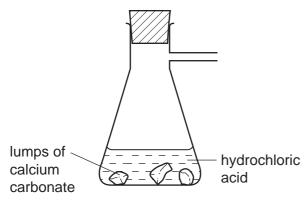
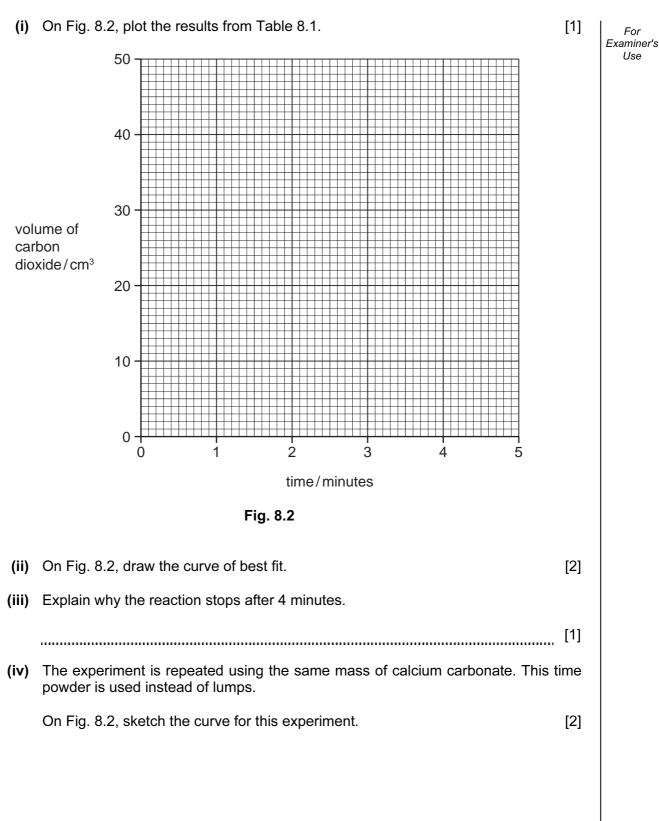


Fig. 8.1


- (a) Complete Fig. 8.1 to show apparatus used to collect and measure the volume of the carbon dioxide. [2]
- (b) Describe a test to show that the gas collected is carbon dioxide.

test .	
result	 [2]

(c) Table 8.1 shows the volume of carbon dioxide collected during the experiment.

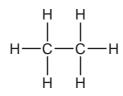
Table 8.1	
-----------	--

time/minutes	volume of carbon dioxide collected/cm ³
0	0
1	15
2	26
3	34
4	40
5	40

9 (a) Complete Table 9.1 to show the gases formed, if any, when each of the substances listed react with dilute sulfuric acid.

Table	9.1
-------	-----

substance added	gas, if any, formed
copper	
magnesium	
sodium carbonate	


[3]

(b) A salt is formed when a metal oxide neutralises an acid.

Complete the word equation for this reaction.

metal oxide	+	acid	\longrightarrow	salt	+		[1]]
-------------	---	------	-------------------	------	---	--	-----	---

For Examiner's Use **10** (a) Fig. 10.1 shows the structure of the alkane, ethane.

Fig. 10.1

Draw a similar diagram to show the structure of the alkene, ethene.

		ethene	[2]
(b)	Nar	ne an alkane with four carbon atoms and give its formula.	
	nan	ne	
	forr	nula	[2]
(c)	(i)	Explain why ethene is more reactive than ethane.	
			[1]
	(ii)	Explain why ethene is important in the chemical industry.	
			[1]

For Examiner's Use

			L T I I I I I I I I I I I I I I I I I I	Ğ	Group			≡	2	>	⋝	⋝	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
								11 Boron 5 27 Auminium 13	6 Carbon 6 28 28 14 14	14 Nitrogen 31 Phosphorus 15	16 B Oxygen 32 32 Suffur 16	19 9 Fluorine 35.5 C1 17 Chlorine	20 Neon 40 Argon
52 55 56 Cr Min Fe 24 Manganese 26 24 25 26 96 26 26	55 Manganese 25 26			59 Cobalt 27 103	5 106 106	64 Cu 29 29 108	65 Zn 30 ^{Zinc} 112	70 Ga 31 115	73 Ge Germanium 32 119	75 AS Arsenic 33	79 Selenium 34 128	80 Br ^{Bromine} 35	84 Krypton 36 131
Mo Tc Mo Tc 184 186 44 188 88 88 786 886 A4 188 188 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4	Hechnetium 186 Rhenlum	Rutheniu Rutheniu 44 05 05 05	ε	- 2	0 D				50 Tin 207 Pb				~
Q 4/		0/		27	2	۶ ۲	00	ō	70	50	4	ç	QQ
141 144 Pr Nd Pm Praeeodymium Neodymium Pomethum 59 60 61	60 Neodymium 60	9		150 Sm samarium 62	152 Eu 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dysprosium 66	165 Holm 67	167 Er Erbium 68	169 Thulium 69	173 Yb 70	175 Lu Lutetium 71
Pa 238 238 Protectinium Protectinium 92 93	238 Uranium 92	Neptunium 93	-	Plutonium 94	Am Americium 95	Curium Ourium	BK Berkelium 97	Cf Californium OB	Einsteinium	Fermium Fermium	Md Mendelevium 101	Nobelium 102	Lr Lawrencium 103

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local

www.theallpapers.com

16