

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

PHYSICAL SCIENCE 0652/21

Paper 2 (Core)

October/November 2012

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.


A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	

This document consists of 16 printed pages.

1 Fig. 1.1 shows an uncalibrated liquid-in-glass thermometer.

For Examiner's Use

Fig. 1.1

(a)	(i)	Name a suitable liquid to use in the thermometer.	
			[1]
	(ii)	State the physical property of the liquid on which the operation of the thermomedepends.	eter
			[1]
(b)	(i)	Explain what is meant by a fixed point.	
			[2]
	(ii)	What are the values of the fixed points on the Celsius temperature scale?	
		upper fixed point	
		lower fixed point	[2]
(c)	The	e thermometer is to be calibrated.	
	The	e two fixed points are marked on the thermometer.	
	Des	scribe the remaining stages in calibrating the thermometer.	
			[2]
	•••••		[4]

2	Chlo	rine	e is a member of Group VII of the Periodic Table.	
	(a)	(i)	State the name given to Group VII elements.	
			[1	1]
	(ii)	Name a Group VII element which is less reactive than chlorine.	
			[1	1]
	(i	ii)	Name the Group I element which is in the same Period as chlorine.	
			[1	1]
			nplete Table 2.1 by giving the name and chemical formula of an ionic and a alent compound of chlorine.	а

Table 2.1

compound	name	formula
ionic		
covalent		

[4]

For Examiner's Use

3 Fig. 3.1 shows a man balancing on a tightrope.

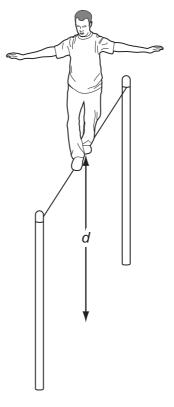


Fig. 3.1

- (a) On Fig. 3.1 mark a possible position of the centre of mass of the man. Label it C. [1]
- (b) The mass of the man is 75 kg.
 - (i) Explain what is meant by mass.

______[1]

(ii) Calculate the weight of the man.

 $[g = 10 \, \text{N/kg}]$

weight = [2]

(c) The man jumps off the tightrope.

The graph in Fig. 3.2 shows his speed in a vertical direction after jumping.

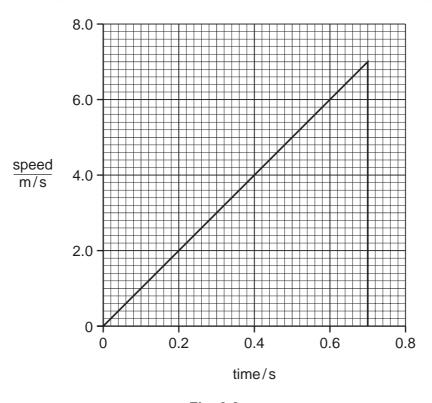


Fig. 3.2

Use Fig. 3.2 to find

(i) the maximum speed of the ma

(ii) the height, *d*, of the wire above the ground.

$$d =$$
_____ m [3]

(d) (i) Name the form of energy the man has due to his motion as he falls to the ground.

[1]

(ii) Suggest what happens to this energy when he hits the ground.

[2]	

.....

4 Fig. 4.1 shows apparatus used to react copper(II) oxide with hydrogen.

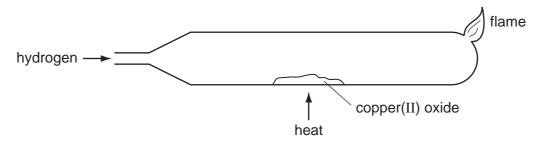


Fig. 4.1

(a)	(i)	Copper(II) oxide is black.
		State the colour change you would see when copper(II) oxide is reduced to copper by hydrogen.
		[1]
	(ii)	Write a balanced equation for this reaction.
		[1]
	(iii)	Explain what this reaction shows about the relative reactivity of copper and of hydrogen.
		[1]
(b)		scribe how you could show that carbon (charcoal) is more reactive than copper and s reactive than magnesium.
		101

5		monium sulfate, $(NH_4)_2SO_4$, and ammonium nitrate, NH_4NO_3 , are important ogen-containing fertilisers.	For Examiner's Use
	(a)	Name two substances which react together to make ammonium nitrate.	
		1	
		2[2]	
	(b)	Calculate the relative molecular mass of ammonium sulfate.	
		[Relative atomic masses: A _r : H,1; N,14; O,16; S,32.]	
		answer [2]	
	(c)	Show by calculation that there is 35% nitrogen by mass in ammonium nitrate, NH ₄ NO ₃ .	
		[Relative molecular mass of ammonium nitrate is 80]	
		[2]	
	(d)	Ammonium sulfate contains less nitrogen by mass than ammonium nitrate.	
	()	Suggest why ammonium sulfate is sometimes preferred as a fertiliser.	
		[1]	

© UCLES 2012

6 Fig. 6.1 shows the refraction of red light as it passes through a parallel sided glass block.

For Examiner's Use

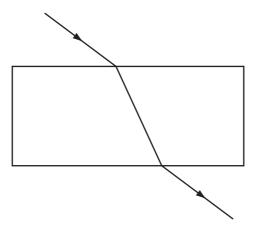


Fig. 6.1

- (a) On Fig. 6.1 mark
 - (i) an angle of incidence and label it i,

[1]

(ii) an angle of refraction and label it r.

[1]

(b) Blue light refracts more than red light.

Blue light is shone along the same incident path as the red light.

On Fig. 6.1, draw the path of the blue light as it passes through the block and emerges into the air. [2]

(c) Fig. 6.2 shows a parallel beam of light incident on a converging lens.

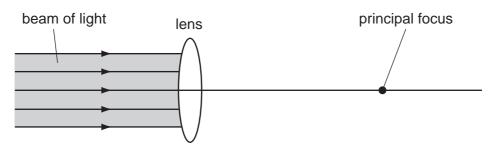


Fig. 6.2

- (i) On Fig. 6.2 draw rays to show the path of the light after it passes through the lens. [3]
- (ii) On Fig. 6.2 draw an arrow to show the focal length of the lens. [1]
- (d) Powerful lenses are usually very thick.

Images formed by these lenses have coloured edges.

Suggest and explain a reason for this. You will find it helpful to use the information from parts (b) and (c) in your explanation.

7 Danielle is investigating the resistance of a length of constantan wire.

She builds the circuit shown in Fig. 7.1.

For Examiner's Use

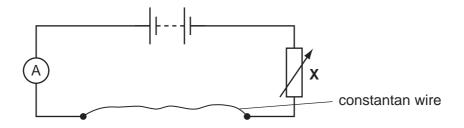


Fig. 7.1

- (ii) Name the component labelled X. [1]

 (iii) Explain the use of this component in the circuit. [1]
 - (iii) On Fig. 7.1, show how Danielle should connect a meter to measure the potential difference across the wire. [2]
- **(b)** When the potential difference across the constantan wire is 4.5 V, the reading on the ammeter is 0.12 A.

Calculate the resistance of the constantan wire.

resistance = ____ unit ____ [3]

(c)	Dar	nielle connects a second identical constantan wire in parallel with the original wire.	Fxar
	Sta	te how	Lxai
	(i)	the total resistance in the circuit changes,	
		[1]	
	(ii)	the reading on the ammeter changes.	
		[1]	
(d)		hird piece of constantan wire has the same length as the original wire but has a ger diameter.	
	Sta wire	te how the resistance of the third wire compares with the resistance of the original e.	
	Giv	e a reason for your answer.	
		[2]	

For Examiner's Use **8** Fig. 8.1 shows apparatus used in an experiment to react hydrochloric acid with excess calcium carbonate to produce carbon dioxide.

For Examiner's Use

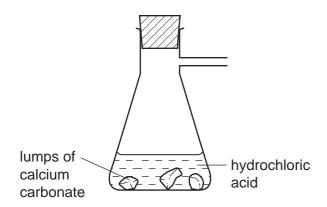


Fig. 8.1

- (a) Complete Fig. 8.1 to show apparatus used to collect and measure the volume of the carbon dioxide. [2]
- **(b)** Describe a test to show that the gas collected is carbon dioxide.

test		
result	1	[2]

(c) Table 8.1 shows the volume of carbon dioxide collected during the experiment.

Table 8.1

time/minutes	volume of carbon dioxide collected/cm³
0	0
1	15
2	26
3	34
4	40
5	40

(i) On Fig. 8.2, plot the results from Table 8.1.

[1] For Examiner's Use

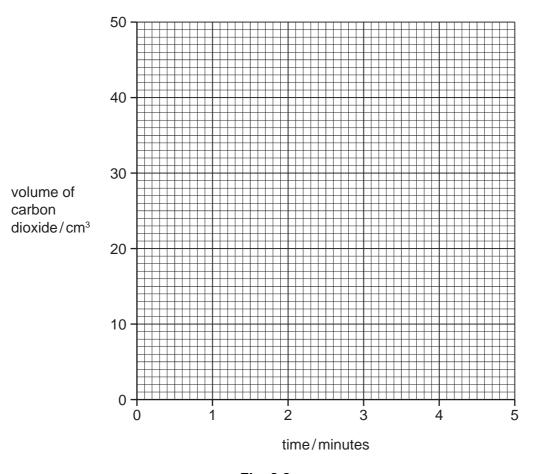


Fig. 8.2

(ii) On Fig. 8.2, draw the curve of best fit.

[2]

(iii) Explain why the reaction stops after 4 minutes.

[1]

(iv) The experiment is repeated using the same mass of calcium carbonate. This time powder is used instead of lumps.

On Fig. 8.2, sketch the curve for this experiment.

[2]

9 (a) Complete Table 9.1 to show the gases formed, if any, when each of the substances listed react with dilute sulfuric acid.

For Examiner's Use

Table 9.1

substance added	gas, if any, formed
copper	
magnesium	
sodium carbonate	

[3]

(b) A salt is formed when a metal oxide neutralises an acid.

Complete the word equation for this reaction.

metal oxide + acid → salt +

10 (a) Fig. 10.1 shows the structure of the alkane, ethane.

For Examiner's Use

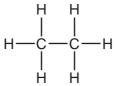


Fig. 10.1

Draw a similar diagram to show the structure of the alkene, ethene.

		ethene	[2]
(b)	Nar	me an alkane with four carbon atoms and give its formula.	
	nan	ne	
	forn	nula	[2]
(c)	(i)	Explain why ethene is more reactive than ethane.	
			[1]
	(ii)	Explain why ethene is important in the chemical industry.	
			[1]

DATA SHEET
The Periodic Table of the Elements

Group	0	4 He Helium	20 Ne Neon	40 Ar Argon	84 K rypton	36	X 131	Xenon 54	0	Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103
	\		19 F luorine	35.5 C1 Chlorine	80 Br Bromine	35	127	lodine 53	**	Atatine Astatine 85		173 Yb Ytterbium 70	No Nobelium
			16 Oxygen 8	32 S Sulfur	79 Se Selenium	34	128 Te	Tellurium 52	0	Polonium 84		169 Tm Thulium 69	Md Mendelevium 101
	>			14 N itrogen 7	31 P Phosphorus 15	75 As Arsenic	33	122 Sb	Antimony 51	209	Bismuth 83		167 Er Erbium 68
	2		12 C Carbon 6	28 Si Silicon	73 Ge Germanium	32	Sn 419	50 Tin	207	Lead 82		165 Ho Holmium 67	Einsteinium 99
	=		11 Boron 5	27 A 1 Auminium 13	70 Ga	31	115 n	Indium 49	204	Thallium 81		162 Dy Dysprosium 66	Californium 98
					65 Zn Zinc	30	112 Cd	Cadmium 48	201	Mercury 80		159 Tb Terbium 65	Bk Berkelium 97
					Copper	59	108 Ag	Silver 47	197	Gold 79		157 Gd Gadolinium 64	Cm Curium 96
					59 Nickel	78	106 Pd	Palladium 46	195	Platinum 78		152 Eu Europium 63	Am Americium 95
			ı		59 Cobalt	27	103 R	Rhodium 45	192	Iridium 77		Sm Samarium 62	Pu Plutonium
		1 Hydrogen			56 Fe	56	101 Zu	Ruthenium 44	190	Osmium 76		Pm Promettium 61	Neptunium
					55 Mn Manganese	25	2	43 ⊾	186	Rhenium 75		144 Nd Neodymium 60	238 U Uranium
					52 Ç		% V	Molybdenum 42	184	Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91
					51 V	23	ε Θ	Niobium 41	181	Tantalum 73		140 Ce Cerium	Th Thorium
					48 Titanium	22	ر ا ۱	Zirconium 40	178	Hafnium * 72		ı	mic mass abol mic) number
				I	45 Sc Scandium	21	© >	Yttrium 39	139	Ę	227 Ac Actinium 89	d series series	 a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		Be Beryllium 4	24 Mg Magnesium		50	∞ స	Strontium 38	137	Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series	<i>a</i> × <i>a</i> ✓
	_		7 Li Lithium	23 Na Sodium	39 X Potassium	19	[∞] dS	Rubidium 37	133	Caesium 55	Fr Francium 87	*58-71 L 190-103	Key

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).