

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

PHYSICAL SCIENCE

Paper 3 (Extended) October/November 2011

1 hour 15 minutes

0652/32

r aper o (Exteriaca)

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

iner's Use

This document consists of 19 printed pages and 1 blank page.

1 Two cars are being tested on a straight level track.

Fig. 1.1 shows the speed-time graphs for the two cars, each of mass 1500 kg.

For Examiner's Use

Fig. 1.1

(a) Determine the maximum velocity of car A.

velocity =	m/s	[1]

(b) Describe the motion of car A after 26 s.

••••
••••
 [2

(c)	(i)	Use the graph to calculate the acceleration of car B during the first 10s of the te	I	For xaminer's Use
	(ii)	acceleration = Calculate the resultant force on car B during this period.	[2]	
	(iii)	force = Explain why the engine must provide a greater force than that given in your answ to (c)(ii).	[2] wer	
			[2]	
(d)	As	the two cars approach the end of the track they brake and come to rest.		
	Exp	plain which car produces the greater braking force.		
			[2]	

2 Fig. 2.1 shows a catalytic converter, which is part of a car exhaust system.

Fig. 2.1

Scientists analyse the gases at **A** and at **B**. Their results are shown in Table 2.1.

Table 2.1

gas	percentage at A	percentage at B
carbon dioxide	8.0	9.2
carbon monoxide	5.0	3.8
hydrogen	2.0	0.8
nitrogen	71.0	71.3
nitrogen monoxide	0.3	0.0
oxygen	4.0	2.8
water vapour	9.0	10.7

(a)	The scientists	conclude	that in	the	catalytic	converter	nitrogen	monoxide is	s conve	erted
	to nitrogen by	reaction w	ith carb	on r	monoxide					

(i)	Write a balanced equation for this reaction. Use the data in Table 2.1 to help you	
		[2]
(ii)	Use this reaction to explain the meaning of the terms reduced and oxidised.	
		[2]
iii)	Explain how the results in Table 2.1 support the conclusion that this reaction take place in the catalytic converter.	es
		••••
		[2]

© UCLES 2011

	(iv)	Use data from Table 2.1 to suggest another reaction that takes place in catalytic converter.	the	For Examine Use
			[1]	
(b)	Par	ts of the car exhaust system are made from galvanised steel.		
	(i)	Explain how galvanising prevents steel from rusting.		
			[3]	
	(ii)	Suggest why galvanising is a better method of rust prevention than painting.	[0]	
	` '			
			[4]	

3 A student experiments with a rubber band. She stretches it between two retort stands and notices that it produces a sound when she plucks it. The apparatus is shown in Fig. 3.1.

For Examiner's Use

Fig. 3.1

(a)	Explain why the sound is produced.	
		[2]

(b) The student sets up a cathode ray oscilloscope and a microphone, as shown in Fig. 3.2, to display the sound trace produced by the apparatus in Fig. 3.1.

For Examiner's Use

Fig. 3.2

The time base is set to 2.5 ms/division.

Calculate the frequency of the sound wave.

Show your working in the box.

frequency = Hz [3]

Silver s	alts are used in photography.
(a) Th	e action of light on silver bromide releases an electron.
	$Ag^{+}Br^{-} \longrightarrow Ag^{+} + Br + e^{-}$
(i)	How does light enable this reaction to take place?
	[1]
(ii)	The silver ion is converted into a silver atom.
	Why is this said to be a reduction reaction?
	[1]
(iii)	Write an ionic equation to show this reduction of a silver ion.
	[1]
	ver bromide can be made from the reaction between silver nitrate and potassium omide.
A	$AgNO_3(aq) + KBr(aq) \longrightarrow AgBr(s) + KNO_3(aq)$
(i)	Describe how you would prepare a pure, dry sample of silver bromide from solutions of silver nitrate and potassium bromide.

For Examiner's Use

4

[4]

(ii)	What mass of silver bromide could be made from 5.0 g of silver nitrate?	
	[relative atomic masses, A _r : Ag,108; Br,80; N,14; O,16]	
	Show your working in the box.	

mass of silver bromide = _____ g

For Examiner's Use

[3]

5 Fig. 5.1 shows an electric circuit. The e.m.f. of the battery is 6.0 V. The total resistance of the variable resistor 48Ω .

For Examiner's Use

(a) (i) Calculate the current measured by the ammeter.

	current =		[2]
--	-----------	--	-----

(ii) When the sliding contact is at point ${f B}$ the voltmeter reading is 4.5 V.

Calculate the value of the resistance of the section of the variable resistor **BC**.

(b) The sliding contact is moved to point **D**. The reading on the voltmeter is now 3.0 V.

Show that the resistance of the section ${\bf CD}$ of the variable resistor is 24 Ω . You may assume that the current through the circuit remains the same.

[1]

(c)	leav	e student realises that he could use this circuit as a variable voltage supply. Wes the sliding contact at point ${\bf D}$ and connects a 3.0 V bulb of resistance 8Ω in plane voltmeter.	
	(i)	Show that the resistance of the parallel combination of the bulb and the section of the variable resistor is $6\Omega.$	CD
	(ii)	Calculate the total resistance in the circuit.	[2]
((iii)	resistance = Calculate the potential drop across the section CD of the variable resistor.	[1]
((iv)	p.d. = Comment on the brightness of the bulb.	[2]
			[1]

6			alcium carbonate is heated strongly it decomposes to form calcium oxide and dioxide.	
			CaCO ₃ → CaO + CO ₂	
	(a)		culate the volume of carbon dioxide, measured at room temperature and pressure, duced when 2.5 g of calcium carbonate is decomposed.	
		[The	e volume of one mole of any gas is 24 dm ³ at room temperature and pressure.]	
		Sho	w your working in the box.	
			volume of carbon dioxide = dm ³ [3]	
	(b)	Cald	cium oxide reacts with hydrochloric acid to form a salt.	
	(-)	C ui.	CaO + 2HC l \longrightarrow CaC l_2 + H ₂ O	
		In th	nis reaction calcium oxide is acting as a base.	
			Use this reaction to define the terms acid and base in terms of proton transfer.	
			acid	
			base	
			[2]	

(ii) Calcium oxide reacts with acids but not with alkalis. It is classified as a basic oxide.Complete Table 6.1 to classify three other oxides.

For Examiner's Use

Table 6.1

name	formula	property	type of oxide
calcium oxide	CaO	reacts with acids but not alkalis	basic
aluminium oxide	Al ₂ O ₃	reacts with both acids and alkalis	
carbon dioxide	CO ₂	reacts with alkalis but not acids	
nitrogen monoxide	NO	reacts with neither acids nor alkalis	

[3]

7 Fig. 7.1 shows a magnet and a coil which is connected to a sensitive voltmeter.

For Examiner's Use

Fig. 7.1

(a)	(1)	Describe what you would observe as the magnet is moved away from the coil.	
			[2]
	(ii)	Explain this observation using the theory of electromagnetic induction.	
			••••
			[2]
(b)	The	magnet is now moved towards the coil.	
	Des	scribe what you would observe.	
			[1]

(c) The magnet is now replaced with a similar coil connected to an alternating supply. The original coil is connected to a cathode ray oscilloscope. This is shown in Fig. 7.2.

For Examiner's Use

Fig. 7.2

State and explain what is observed when the switch S is closed.
[2]

8 Table 8.1 contains data about elements in Group 0 of the Periodic Table.

Table 8.1

element	symbol	proton number	boiling point /°C	density of gas in kg/m³
helium	He	2	-269	0.17
neon	Ne	10	-246	0.84
argon	Ar	18	-186	1.67
krypton	Kr	36	-152	3.50

(a) (i)	What name is given to the elements in Group 0?
	[1]
(ii)	Use information from Table 8.1 to describe a trend in one physical property shown by this group of elements.
	[2]
(iii)	Describe a chemical property common to all elements in this group.
	[1]
(iv)	Xenon is the next member of Group 0 after krypton.
	Predict the density of xenon.
	density = $\frac{\text{kg/m}^3}{\text{kg/m}^3}$ [1]

(b)	(i)	Draw a diagram to show the electron arrangement in an atom of argon.	For Examiner's Use
		[2]	
	(ii)	A calcium ion has the same electron arrangement as an argon atom.	
		Give the name of, and the charge on, another ion apart from calcium that has the same electron arrangement as an argon atom.	
		name charge [2]	
	(iii)	State how a calcium ion is formed from a calcium atom.	
		[2]	

18 9 A student is investigating the cooling of a cup of tea. She makes the tea using water first boiled in a kettle. As the tea cools she notices that some of it evaporates. (a) (i) State **one** similarity between evaporation and boiling. (ii) Explain the difference between evaporation and boiling. **(b)** The graph in Fig. 9.1 shows how the temperature of the tea changes with time. 100 temperature/°C 50 2 4 6 0 time/minutes Fig. 9.1 Use the graph to estimate room temperature. room temperature = [1]

(c) Explain, in terms of the molecular kinetic theory, what happens to the tea as it cools.

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

1		=							J.B	Group			≡	≥	>	5	=	0
11 12 14 16 16 17 14 16 16 17 14 16 16 17 14 16 16 17 14 16 16 17 14 16 16 17 14 16 16 17 14 16 16 17 17 17 17 17 17	-							T Hydrogen										Helium
Titalium Numbor	o Be												= W	² C	4 Z	9F O	€ 17	20 S
148 51 52 55 55 55 55 55 55	Beryllium 4														Nitrogen	Oxygen 8	Fluorine	Neon 10
48 51 62 65 65 65 65 65 65 65	Mg												27 A1	⊗ ⊠		% 35		Å
1	Magnesium 12	E					•						Aluminium 13	Silicon 14		Sulfur 16		Argon 18
Title Tit	40		45	48	51	52		99	29	59	64	92	70	73		62		84
1			Sc	F	>	ပ်	Mn	Fe	ပိ	Z	Cn	Zn	Ga	Ge	As	Se	Ā	ž
Zr Nbb Mode and M	Calcium 8	2 2	Scandium	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Krypton 36
Zr Nb Mo TC Ru Rh odum Pd Ag Cd In Sn Sb Te Te 2 rccnulum Nicbbum Abbyddenum Tehneluum Ruthenium	88		68	91		96		101	103	106	108	112		119	122	128	127	131
21 circnium Nicbum Nicbum Molybdenum Rechestium Rechestiu	S			Zr	Q N	Mو	ည			Pd	Ag	පි	In		Sb	Те	-	Xe
H	Strontium 38 39		rttrium	Zirconium 40	iobium	Molybdenum 42	Technetium 43			Palladium 46	Silver 47	Cadmium 48	Indium 49	Tin	Antimony 51	Tellurium 52	lodine 53	Xenon 54
Hefritum Tantalum	137		139	178	181	184	186	190	192	195	197	201		207	209			
Patrialium Tantalum Tantalu	Ва		Гa	Ξ	Та		Re	SO.	Ir	₹	Αu	Hg	11	Pb				Ru
140	Barium 56	5	Lanthanum *	Hafnium 72	Tantalum 73	ungsten	Rhenium 75	Osmium 76	lridium 77	Platinum 78		Mercury 80	Thallium 81	Lead 82	Sismuth		Astatine 85	Radon 86
140 141 144 144 150 152 157 159 162 165 167 169 162 165 167 169 162 165 167 169 162 165 167 169 162 165 167 169 162 165 167 169 162 165 167 169 162 165 167 169 162 165 167 169 162 165 167 169 162 165 167 169 162 165 167 169 162 165 167 169 162 165	226		227															
Certum Prosecutiviting Nod Pm SSm and turning Eu Gdd Tb Dy Hohium Fribitum Thulum ymbol Th Prosecutiviting Provincing			Actinium +															
Certification Projection Ned Opportunity Projection Projection <th< td=""><td>- diode date</td><td>1 2</td><td>rion</td><td></td><td>140</td><td>1</td><td>144</td><td></td><td>150</td><td>152</td><td>157</td><td>159</td><td></td><td>165</td><td>167</td><td></td><td>173</td><td>175</td></th<>	- diode date	1 2	rion		140	1	144		150	152	157	159		165	167		173	175
SS SS SS SS SS SS SS S	190-103 Actinoid series	Seri	es es		Serium Cerium	Pr Praseodymium	Neodymium					Terbium		H olmium	Erbium	T m	Yb	Lutetium
232 Th Pa U Np Put online American Contam Bk Cf Es Fm Md 100 101 121 132 14 135 14 135 16 137 100 101 <td></td> <td></td> <td></td> <td></td> <td>58</td> <td>- 69</td> <td>09</td> <td></td> <td></td> <td></td> <td></td> <td>65</td> <td></td> <td>29</td> <td>89</td> <td></td> <td>20</td> <td>71</td>					58	- 69	09					65		29	89		20	71
The Paractinium Varium Nepturium Putorium Protactinium Protactinium Protactinium Nepturium Putorium Protactinium Protactinium Nepturium Putorium Putorium Protactinium Nepturium Perentium Nepturium Perentium Nepturium Nepturium Protactinium Nepturium Neptur	a a = re	a = re	lative aton	nic mass														
Thorium Protactinium Uranium Neptunium Putonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium 60 91 92 93 94 95 96 97 98 99 99 100 101	× ×	×	atomic symi	lod		Ьа	-	ď			CB	BK	ర	Es	Fm	Md	Š	۲
	d = q	d = q	roton (atom	nic) number		Protactinium 91	Uranium 92	Neptunium 93			Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.