

98387993

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER		CANDIDATE NUMBER
PHYSICAL SCI	ENCE	0652/03
Paper 3 (Extend	ded)	October/November 2010
		1 hour 15 minutes
Candidates ans	wer on the Question Paper.	
No Additional M	aterials are required.	

READ THESE INSTRUCTIONS FIRST

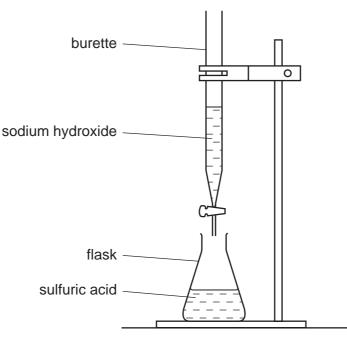
Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

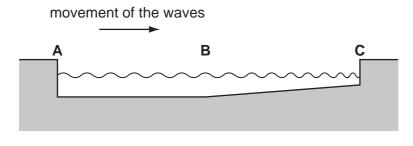
DO NOT WRITE IN ANY BARCODES.


Answer all questions.	For Exam	iner's Use
A copy of the Periodic Table is printed on page 20.	1	
At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part	2	
question.	3	
	4	
	5	
	6	
	7	
	8	
	Total	

This document consists of 17 printed pages and 3 blank pages.

UNIVERSITY *of* **CAMBRIDGE** International Examinations **1** Fig. 1.1 shows apparatus used to react dilute solutions of sodium hydroxide and sulfuric acid.

- (a) Sodium hydroxide is added slowly from the burette to the flask until in it is in excess.
 - (i) Suggest a value for the pH of the acid before any sodium hydroxide solution is added.


pH = [1]

(ii) Describe the changes in the pH of the liquid in the flask as the sodium hydroxide is added until in excess.

(iii) Suggest how you could observe the change in pH.
(iv) Write a balanced equation for the reaction that takes place.
[2]

(b)	During the reaction protons are transferred from one reagent to the other.	For Examiner's
	Identify the source of the protons and explain what is happening.	Use
	[3]	

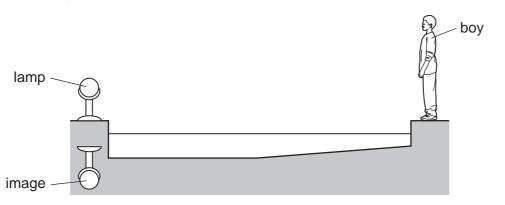
2 Fig. 2.1 shows a side view of a shallow pool.

Some waves move across the surface of the water.

- (a) (i) Mark on the diagram, between **A** and **B**, one wavelength of the waves. [1]
 - (ii) Explain why the wavelength of the waves changes as the waves go across the pool from **B** to **C**.

[2]

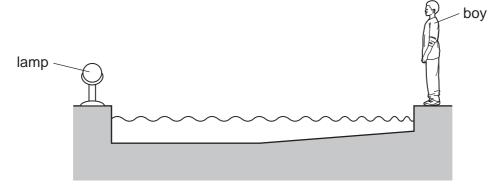
(b) The wavelength of the waves between **A** and **B** is 12 cm. They move across the pool at a speed of 90 cm/s.


Calculate the frequency of these waves.

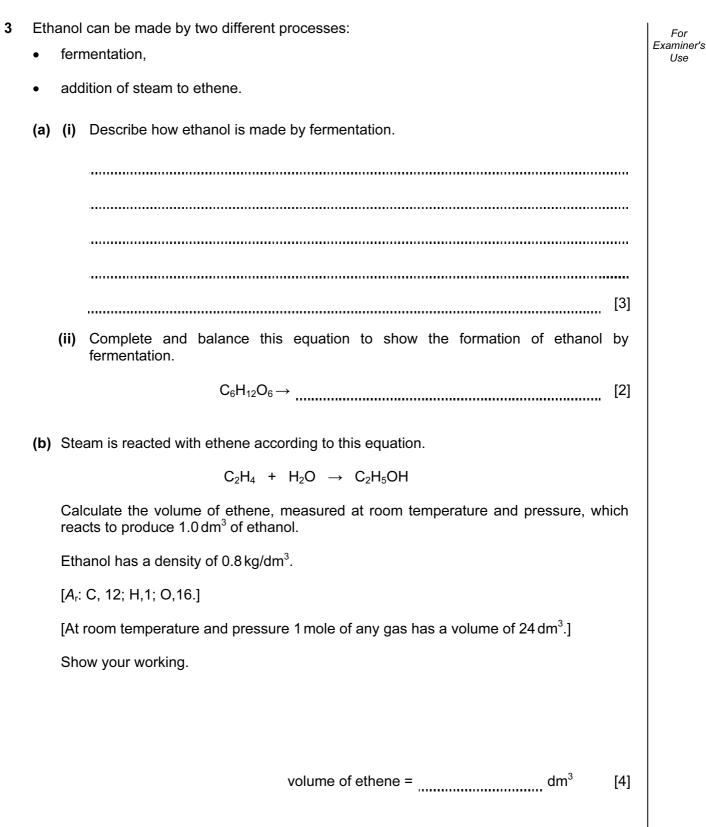
Show your working.

frequency [2]

(c) When the pool is perfectly calm, a boy observes that an image of a lamp is formed as shown in Fig. 2.2.


5

(i) On Fig. 2.2, draw a ray from the lamp to the boy's eye to show how the image is formed. [2]


A breeze blows and ripples form. The appearance of the side view of the surface of the pool is shown in Fig. 2.3.

(ii) Explain why a single image of the lamp is no longer seen. Draw suitable rays on Fig. 2.3 to help with your explanation.

[3]

4 Fig. 4.1 shows two conducting spheres. Sphere B is connected to earth through a sensitive ammeter. Sphere A has a very large positive charge on it. When sphere B is brought near to A, a spark jumps between the two spheres and the ammeter needle moves rapidly up the scale and then back to zero.

sphere A sphere B safety resistor 50 000 Ω A stand earth

(a) (i) Explain why the ammeter needle moves.

(ii) Describe the energy changes that occur when the spark jumps between the two spheres.
 (b) (i) The average current through the ammeter is 0.0012 mA.
 (calculate the average potential difference across the safety resistor.

potential difference = [2]

For

Examiner's Use

(ii)	The current lasts for 1.5 ms.		I	For Examiner's
	Calculate the charge which flows through the ar	nmeter. charge =	[2]	<i>Examiners</i> Use
(iii)	Calculate the energy transferred in the resistor.			
		energy =	 [2]	

5 Table 5.1 shows the elements in a period of the Periodic Table.

Table 5.1

		1						
	group	I	II	Ш	IV	V	VI	VII
	element	Li	Be	В	С	Ν	0	F
			nship betwo s of these so			and the nu	umber of	
1								[1]
	Describe h seven elen		aracter of t	the elemer	nts changes	s from left	to right ac	cross these
1								[1]
			.+ 0	<i>.</i> .	a ²⁻			
(C)	Lithium for	ms an ion l	₋i⁺. Oxygen	forms an id	on O ² .			
	(i) What i	s the formu	la for the ic	onic compo	und lithium	oxide?		
								[1]
		be, in term oxide.	s of electro	ns, how lith	nium and o	xygen atorr	ns form the	compound
								[3]

(d) In the box below, draw a diagram to show the arrangement of all electrons in a molecule of nitrogen.

For Examiner's Use

[3]

- 6 Jane is given a radioactive source. She finds out what type or types of radiation it emits.
 - (a) Describe one safety precaution she must take when using the source.

[1]

(b) She sets up a GM-tube and finds there is a count of 12 in one minute with no source present. State why there is a count with no source present.

[1]

(c) She places the source a few centimetres from the GM-tube. Table 6.1 shows the results she obtains using different absorbers between the GM-tube and the source.

absorber	reading 1 / counts per minute	reading 2 / counts per minute	reading 3 / counts per minute
none	4352	4429	4388
thin card	1265	1321	1272
2 mm aluminium	1269	1247	1285
4 cm lead	33	45	37

Table 6.1

(i) Explain why, when there is no absorber present, the readings vary.

.....

......[1]

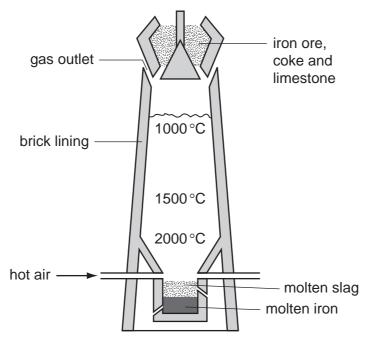
(ii) Complete Table 6.2 and indicate whether each of the three types of radiation are present or absent. Use the evidence from Table 6.1 to explain the presence or absence of each of the three types of radiation.

For Examiner's Use

[4]

type of radiation	present (✓) absent (×)	reason
alpha		
beta		
gamma		

Table 6.2

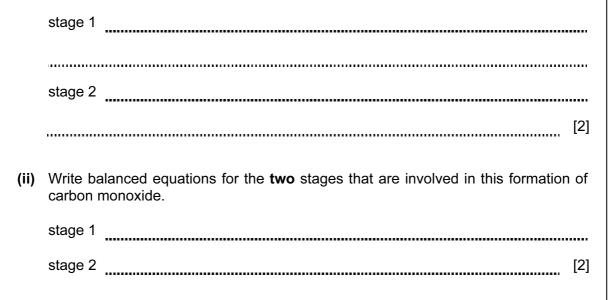

- (d) In a research project a small amount of an alpha emitting isotope is injected into a cancerous tumour in a mouse.
 - (i) Suggest why alpha radiation might be especially effective at destroying tumours.

[2]

(ii) Explain why a beam of alpha particles is not aimed at the tumour from outside the body of the mouse.

[2]

7 Fig. 7.1 shows a blast furnace producing iron from iron ore.



In the blast furnace iron(III) oxide is reduced by carbon monoxide to produce iron metal.

$$Fe_2O_3$$
 + 3CO \rightarrow 2Fe + 3CO₂

- (a) Carbon monoxide is formed from coke in two stages in the blast furnace.
 - (i) Describe the **two** stages to show how carbon monoxide is formed in the blast furnace.

(b)	A blast furnace produces 60 000 tonnes of iron per week. Calculate the mass of iron(III) oxide used to produce this iron. [A _r : Fe, 56; O,16.]	For Examiner's Use
(c)	mass =tonnes [3] Mild steel and stainless steel are two alloys of iron. (i) How are alloys of iron produced? [1]	
(d)	 (ii) Give a reason for producing alloys of iron. [1] Aluminium ore contains aluminium oxide, Al₂O₃. 	
	Why is aluminium not extracted from this ore using a blast furnace?	

8	As	stu	der	nt measures the density of an irregularly shaped stone.	For
	(a)) ((i)	Name two pieces of apparatus he might use.	Examiner's Use
				1	
				2[2]	
		(i	i)	State the measurements he makes.	
				[2]	
		(ii	i)	Explain how he uses his results to find the density of the stone.	
				[2]	
	(b)			eaker contains 280g of sea water, which has a density of 1.12g/cm ³ . culate the volume of sea water in the beaker.	

volume = cm^3 [2]

BLANK PAGE

BLANK PAGE

BLANK PAGE

	0	⁴ Helium	20 Neon 10	40 Ar Argon 18	84 Krypton 36	131 Xe 54	Rn Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103
	١١		9 Fluorine	35.5 C1 17	80 Bromine 35	127 I Iodine 53	At Astatine 85		173 Yb ^{Ytterbium} 70	Nobelium 102
	7		a O ⁰ 0 16	32 S Sultur 16	79 Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium	Mendelevium 101
	>		14 Nitrogen	31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth		167 Er Erbium 68	Fermium 100
	\geq		6 Carbon 6	28 Si licon	73 Ge Germanium 32	119 Sn	207 Pb Lead		165 HO Holmium 67	Einsteinium 99
	≡		5 Boron 1	27 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 T 1 ^{Thallium} 81		162 Dy Dysprosium 66	Californium 98
cille					65 Zn 30	112 Cd Cadmium 48	201 Hg ^{Mercury}		159 Tb ^{Terbium} 65	BK Berkeium 97
Group dauge of the Elements					64 C u Copper	108 Ag Silver	197 Au Gold 79		157 Gd Gadolinium 64	Curium 96
Group					59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Americium 95
					59 Co Cobalt	103 Rh odium 45	192 Ir Iridium		150 Sm Samarium 62	
		^H drogen			56 Fe Iron 26	101 Ru thenium 44	190 OS Osmium 76		Promethium 61	Neptunium 93
					55 Mn ^{Manganese} 25	Tc Technetium 43	186 Re Rhenium 75		144 Neodymium 60	238 Uranium 92
					52 Chromium 24	96 MO Molybdenum 42	184 V Tungsten 74		141 Pr Praseodymium 59	Protactinium 91
					51 Vanadium 23	93 Niobium 41	181 Ta ^{Tantalum} 73		140 Ce ^{Cerium}	232 Tho 90
					48 Titanium 22	91 Zr Zirconium 40	178 Hafnium 72			a = relative atomic mass X = atomic symbol b = proton (atomic) number
					45 Scandium	89 Yttrium 39	139 La Lanthanum 57 *	227 AC Actinium 89	series ries	a = relative atomic mass X = atomic symbol b = proton (atomic) numb
					5 °		-,		<u> </u>	2 0 d
	=		9 Berylium 4	24 Mg Magnesium 12	40 Calcium 20 20	88 Strontium 38	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series	a a=re X = a b = p

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

www.theallpapers.com