

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

	CANDIDATE NAME					
	CENTRE CANDIDAT	E				
*	PHYSICAL SCIENCE		0652/02			
3 5	Paper 2 (Core)	October/Nov	October/November 2008			
8 % C		1 hour	15 minutes			
6	Candidates answer on the Question Paper.					
7 1	No Additional Materials are required.					
*	READ THESE INSTRUCTIONS FIRST					
	Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs, tables or rough working.					
	Do not use staples, paper clips, highlighters, glue or correction fluid.	For Exam	iner's Use			
		1				
	Answer all questions. A copy of the Periodic Table is printed on page 16	2				
	A copy of the reliade rable is printed on page 10.	3				
	At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or par	t 4				
	question.	5				
		6				
		7				
		8				
		9				
		10				
		11				
		12				

This document consists of 14 printed pages and 2 blank pages.

Total

1 A student investigates the current-voltage characteristic for a lamp. She builds the circuit shown in Fig. 1.1.

Fig. 1.1

- (a) Show where the voltmeter should be connected on Fig. 1.1
- (b) From her results the graph in Fig. 1.2 is plotted.

- Fig. 1.2
- (i) What is the current when there is a potential difference of 2.0 V across the bulb?

[1]

2

[2]

For

Examiner's Use

(i	iii)	Use the graph to deduis increased above 0.	uce what happens to the r 30 A.	esistance of the lamp as th	ne current
		Suggest a reason for	the change.		
					[2]
(a)	Cor	nplete Table 2.1 by wr	iting in the missing formula Table 2.1	ae and types of bonding.	
		compound	formula	type of bonding	
		sodium chloride	NaC1	ionic	
		methane			
		ootassium bromide			
					[4]
(b)	Giv	e the names and symb	ools of the ions present in s	sodium chloride.	
	ior	n 1	symbol		
	ior		symbol		[4]
LES 2	008		0652/02/O/N/08	www.theallpa	[Turn ove apers.com

3

(ii) Calculate the resistance of the lamp when the potential difference is 2.0 V.

For Examiner's
Use

[3] resistance =

(iii

2 (a) C

Show your working.

© UCLES 200

3 Fig. 3.1 shows a 0.20 kg mass hanging on a spring.

	0.20 kg Fig. 3.1					
(a)	(i)	Calculate the weight of the mass. ($g = 10 \text{ N/kg}$)				
		Show your working.				
		weight =				
	(ii)	Write down the force acting on the mass due to the spring.				
		force = [3]				
(b)	The	mass is pulled down a short distance and released.				
	(i)	Draw an arrow on Fig. 3.1 and label it F , to show the direction of the resultant force on the mass immediately after it is released. [1]				
	(ii)	State what would happen to the mass immediately after it is released.				
		[2]				

For Examiner's Use

4	Bro The	mine can be extracted fr sodium bromide in seav	om seawater. water is reacted with chlorine to displace the bromine.		For Examiner's Use
	(a)	What is the name given	to all of the elements in Group 7 of the Periodic Table?		
				[1]	
	(b)	How many electrons are	e in the outer shell of bromine?		
				[1]	
	(c)	Write a balanced equal NaBr, and chlorine, Cl_2 .	ation for the displacement reaction between sodium brom	ide,	
				[2]	
	(d)	Explain why iodine can	not be used to displace bromine from sodium bromide.		
				[0]	
				[2]	
	(e)	Give the name, atomic same period of the Peri	number and relative atomic mass of another element in odic Table as chlorine.	the	
		The Periodic Table is p	rinted on page 16.		
		element			
		atomic number			
		relative atomic mass		[3]	

For Examiner's Use

0 10 20 30 40 50 60 70 80 90 100 110 °C \sim

Fig. 5.1 shows a liquid-in-glass thermometer.

5

Fig. 5.1

(a)	(i)	Name a suitable liquid to use in the thermometer.
		[1]
	(ii)	Explain what happens to the liquid when the thermometer is placed in a beaker of hot water.
		[2]
	(iii)	Name the main process by which energy is transferred from the hot water to the liquid in the thermometer.
		[1]
(b)	The	e thermometer is now placed in pure boiling water.
	(i)	What temperature would the thermometer show? [1]
	(ii)	Explain what is meant by the term <i>boiling</i> .
		[2]

Table 6.1

Table 6.1 gives the names and formulae of some organic compounds 6

name of compound	formula
methanol	CH₃OH
ethanol	C₂H₅OH
propanol	
butanol	C₄H₃OH
pentanol	C₅H₁1OH

For Examiner's Use

(a)	(i)	Name the type of	organic	compounds	listed in	the table
(~)	\'	rianio ino type or	organio	oompoundo	notoa m	

			[1]
	(ii)	What is the name given to a series of compounds like these?	
			[1]
(b)		Complete the table by writing in the formula for propanol.	[1]
(c)		Draw the structure of ethanol.	

[1]

(d) Give two uses of ethanol. (i) _____ (ii) _____ [2]

8

(a) Fig. 7.1 shows a ripple tank with three wavefronts approaching an area of shallow

- (ii) Name the process being demonstrated.
- (b) Fig. 7.2 shows a similar ripple tank, with waves approaching a barrier that reflects water waves.

Fig. 7.2

[1]

7

water.

8	Sm	all pi	ieces of metallic gold can be found in the gravel at the bottom of streams.		For
	Sodium is obtained by the electrolysis of one of its compounds.			Use	
	Iron is extracted by reduction of its ore with carbon in a blast furnace.				
	(a)	(i)	Put these three metals in order of reactivity.		
			most reactive		
			least reactive	[2]	
		(ii)	Suggest where you would place carbon in this list? Explain your answer.		
				[2]	
	(b)	Nar	me an ore of iron.		
				[1]	
	(c)	Sta	inless steel is a mixture of iron and chromium.		
		(i)	What name do we give to mixtures of metals like stainless steel?		
				[1]	
		(ii)	Give a use of stainless steel.		
				[1]	

[Turn over www.theallpapers.com

9	(a)	A student arranges two magnets so that magnet B balances as in Fig. 9.1.	For Examiner's Use
		magnet A S N	
		Fig. 9.1	
		(i) Label the poles of magnet B [1]	
		(ii) Explain why magnet B can be balanced in this way.	
		[2]	
	(b)	The student brings a magnet near to an iron bar.	
		X Y S N iron bar	
		Fig. 9.2	
		What happens when:	
		The magnet is brought up to end Y ?	
		The magnet is brought up to end X ? [1]	
	(c)	He wraps a length of wire around the iron bar. He connects the wire to a battery so that there is a current in the wire.	
		He repeats the experiment in (b) . Explain how you would expect the results to change	
		[2]	

10 Fig. 10.1 shows an experiment to measure the volume of oxygen in 100 cm^3 of air.

Oxygen reacts with iron to form a solid compound.

(ii) Name the main gas in the tube after the oxygen has reacted.

[1]

© UCLES 2008

[1]

[1]

[1]

 11 The iodine isotope, $\frac{131}{53}$ I, decays by emitting a β -particle.
 For Examiner's Use

 (a) Explain what is meant by a β -particle.
 [2]

 (b) (i) Complete the equation which describes the decay.
 [2]

 $\frac{131}{53}$ I = $\frac{131}{153}$ X + $\frac{131}{153}$ [2]

 (ii) Use the Periodic Table, on page 16, to identify the element X and comment on its reactivity.
 [4]

12 A sample of copper chloride is made by reacting excess copper carbonate with hydrochloric acid. Examiner's (a) Balance the equation for this reaction. \dots CuCO₃ + \dots HCl \rightarrow \dots CuCl₂ + \dots CO₂ + \dots H₂O [1] (b) (i) Name the gas evolved. [1] (ii) Describe a test for this gas. [2] (c) How could you obtain pure copper chloride crystals from the resulting mixture ? [2]

For

Use

BLANK PAGE

0652/02/O/N/08

www.theallpapers.com

BLANK PAGE

0652/02/O/N/08

					-				- -			c.		<i>c</i> :	_		_]			_	Ę			mi
	0	Heliur Heliur	2	20	Ne	Neon 10	40	Ar	Argor 18	84	Ъ	Krypto 36	131	Xe	Xenoi 54		Rn	Radoi 86			175	Ξ	Lutetiu 71		ב	Lawrenc
	II>			19	ш	Fluorine 9	35.5	CI	Chlorine 17	80	Ŗ	Bromine 35	127	Ι	lodine 53		At	Astatine 85			173	٩۲	Ytterbium 70		No No	Nobelium
	N			16	0	Oxygen 8	32	S	Sulphur 16	62	Se	Selenium 34	128	Te	Tellurium 52		Ро	Polonium 84			169	Tm	Thulium 69		Md	Mendelevium
	>		-	14	z	Nitrogen 7	31	٩	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	209	<u>B</u>	Bismuth 83			167	ц	Erbium 68		Fm	Fermium
	2	-		12	ပ	Carbon 6	28	Si	Silicon 14	73	Ge	Germanium 32	119	Sn	Tin 50	207	Pb	Lead 82			165	Ч	Holmium 67		Es	Einsteinium
	≡			11	8	Boron 5	27	٩l	Aluminium 13	70	Ga	Gallium 31	115	In	Indium 49	204	Τl	Thallium 81			162	D	Dysprosium 66		ບັ	Californium
										65	Zn	Zinc 30	112	Sd	Cadmium 48	201	Hg	Mercury 80			159	Tb	Terbium 65		Ŗ	Berkelium
										64	Cu	Copper 29	108	Ag	Silver 47	197	Au	Gold 79			157	Gd	Gadolinium 64		C C C	Curium
dno										59	Ï	Nickel 28	106	Pd	Palladium 46	195	Pt	Platinum 78			152	Eu	Europium 63		Am	Americium
Gro										59	ပိ	Cobalt 27	103	Rh	Rhodium 45	192	Ir	Iridium 77			150	Sm	Samarium 62		Pu	Plutonium
		Hvdrogen	1							56	Fe	lron 26	101	Ru	Ruthenium 44	190	os	Osmium 76				Pm	Promethium 61		dN	Neptunium
										55	Mn	Manganese 25		Ч	Technetium 43	186	Re	Rhenium 75			144	Nd	Neodymium 60	238	∍	Uranium
										52	ບັ	Chromium 24	96	Mo	Molybdenum 42	184	×	Tungsten 74			141	Pr	Praseodymium 59		Ра	Protactinium
										51	>	Vanadium 23	93	ЧN	Niobium 41	181	Та	Tantalum 73			140	ce	Cerium 58	232	Th	Thorium
										48	F	Titanium 22	91	Zr	Zirconium 40	178	Ŧ	Hafnium 72			_			nic mass	loc	iic) number
										45	Sc	Scandium 21	89	≻	Yttrium 39	139	La	Lanthanum 57 *	227 A C	Actinium 89	ceries	arias	2010	= relative aton	= atomic sym.	= proton (atom
	=			6	Be	Beryllium 4	24	Mg	Magnesium 12	40	Ca	Calcium 20	88	Sr	Strontium 38	137	Ba	Barium 56	226 D.a	Radium 88	bionedtae	Actinoid s		a a:	×	= q
	_			7	:-	Lithium	23	Na	Sodium	39	¥	Potassium 9	85	Rb	Rubidium 17	133	Cs	Caesium 5	ů	Francium .7	8-711	0-103 /			ey	٩

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

www.theallpapers.com

16