CANDIDATE NAME

CENTRE

 NUMBER
CANDIDATE NUMBER

PHYSICAL SCIENCE

0652/02
Paper 2 (Core)
October/November 2007

Candidates answer on the Question Paper.
No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams, graphs, tables or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
A copy of the Periodic Table is printed on page 16.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
Total	

This document consists of $\mathbf{1 5}$ printed pages and 1 blank page.

1 Fig. 1.1 shows the speed of a car as it moves along a straight, level track.

Fig. 1.1
(a) What was the initial speed of the car? \qquad
(b) Describe the motion of the car during
(i) the first 1.5 s ,
\qquad
(ii) from 1.5 s to 3.0 s . \qquad
\qquad
(c) Calculate the distance the car travelled in the first 1.5 s .

Show your working.
distance $=$
unit

2 (a) Balance this equation for the burning of methane in a limited supply of air.

$$
\begin{equation*}
\ldots \ldots . \mathrm{CH}_{4}+\ldots . . . \mathrm{O}_{2} \longrightarrow \ldots . . \mathrm{H}_{2} \mathrm{O}+\ldots . . \mathrm{CO} \tag{1}
\end{equation*}
$$

(b) Explain why it is dangerous to release carbon monoxide into the air.
\qquad
\qquad
(c) Name the compound of carbon formed when methane burns in a plentiful supply of air.

3 Complete Table 3.1 by giving the formula of each of these pollutants, naming a source of each, and a problem caused by releasing each into the atmosphere.

Table 3.1

pollutant	formula	source	problem
sulphur dioxide			
nitrogen dioxide			

4 Fig. 4.1 shows a view from above as a set of ripples move out from a point when a stone is thrown into a pond.

Fig. 4.1
(a) (i) Mark on Fig. 4.1 one wavelength and label it λ.
(ii) A boy counts 12 waves hitting the bank in 5.0 s .

Calculate the frequency of the waves.
Show your working.
(b) The water is shallower near the bank and the waves slow down. Suggest what effect that this will have on
(i) the wavelength of the waves, \qquad
\qquad
(ii) the frequency of the waves. \qquad
\qquad

5 Fig. 5.1 shows three test-tubes with pieces of different metal foil added to solutions containing metal ions.

The observations seen in each test-tube are also given.

Fig. 5.1
(a) Use the results to work out the order of reactivity of the three metals.
most reactive
least reactive
(b) Complete this equation for the reaction when magnesium is added to aqueous copper(II) sulphate.

$$
\begin{equation*}
\mathrm{Mg}+\mathrm{CuSO}_{4} \longrightarrow \tag{1}
\end{equation*}
$$

\qquad $+$
(c) What happens when a piece of copper foil is put into a solution containing magnesium ions?

6 A student has a cell, three identical resistors, and an ammeter.
He builds the circuits shown in Fig. 6.1.

Fig. 6.1
(a) (i) In which circuit is the ammeter reading the highest?
circuit
(ii) Explain your answer.
\qquad
\qquad
\qquad
(b) The student now rebuilds circuit 2 as shown in Fig. 6.2.

Fig. 6.2
Explain, giving a reason, how the ammeter reading compares with the reading in the original circuit 2.
\qquad
(c) He now rebuilds circuit 3, as shown in Fig. 6.3.

Fig. 6.3
Explain, giving a reason, how the ammeter reading compares with the reading in the original circuit 3.
\qquad
\qquad
\qquad

7 Sodium is an element in Group I of the Periodic Table.
(a) Complete Table 7.1 for an atom of sodium by reference to the Periodic Table shown on page 16.

Table 7.1

proton (atomic) number	
relative atomic mass	
number of neutrons in the nucleus	
arrangement of electrons in shells	

(b) Write down the name and symbol of a Group I element which is less reactive than sodium.
name
symbol
\qquad
\qquad

8 Fig. 8.1 shows the apparatus used to compare the penetration of different radioactive emissions.

Fig. 8.1
Table 8.1 shows the count obtained in 2 minutes using different sources, with different absorbers.

Table 8.1

source	count with no absorber	count with paper absorber	count with aluminium absorber	count with lead absorber
krypton-85	3270	3268	14	12
americium-240	5854	1649	1644	103

(a) (i) State, with reasons, the type or types of radiation emitted by the krypton-85 source.
\qquad
\qquad
\qquad
(ii) State, with reasons, the type or types of radiation emitted by the americium- 240 source.
\qquad
\qquad
\qquad
\qquad
(b) Care must be taken when handling or storing radioactive materials.
(i) State one precaution which must be used when handling radioactive materials.
\qquad
\qquad
(ii) State one precaution which must be used when storing radioactive materials.
\qquad

9 Ethane and ethene are gases which can be obtained from crude oil.
(a) State the formula of ethene.

(b) Describe the difference in the structures of ethane and ethene.
\qquad
\qquad
(c) Describe a test to distinguish between ethane and ethene. test
\qquad result with ethene
\qquad result with ethane
\qquad
(d) What do we call the process of making poly(ethene) from ethene?

10 Fig. 10.1 shows the structure of a cathode ray tube.

Fig. 10.1
(a) Explain how parts K and \mathbf{A} produce cathode rays.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Fig. 10.2a and Fig. 10.2 b show two waveforms displayed on the cathode ray oscilloscope.
The settings of the oscilloscope are the same in each case.

Fig. 10.2a

Fig. 10.2b
(i) State, giving a reason, which of the waves has the greater amplitude.
\qquad
\qquad
(ii) State, giving a reason, which of the waves has the greater frequency.
\qquad
\qquad
\qquad

11 Limestone is an important raw material.
(a) Give the name and formula of the main calcium compound present in limestone. name
formula
(b) (i) How can calcium oxide (lime) be made from limestone?
\qquad
(ii) What needs to be added to calcium oxide to make calcium hydroxide (slaked lime)?
\qquad
(iii) The reaction to make calcium hydroxide is exothermic. What does exothermic mean?
\qquad
(c) Why do farmers sometimes spread calcium hydroxide on the soil in their fields?

12 Fig. 12.1 shows a ray of light incident on a parallel sided glass block.

Fig. 12.1
(a) Complete the path of the light as it passes through and leaves the block.
(b) Mark on Fig. 12.1
(i) the angle of incidence and label it i,
(ii) the angle of refraction and label it r.

13 Chlorine is a reactive element in Group VII of the Periodic Table.
(a) Why is chlorine often added to drinking water supplies?
\qquad
(b) Complete Table 13.1 by naming the type of bonding present in each of these substances.

Table 13.1

substance	type of bonding present
chlorine	
hydrogen chloride	
sodium chloride	

(c) (i) What is the symbol for a chloride ion?
...
(ii) How many electrons are in the outer shell of a chloride ion?
...
(iii) How is the electron structure of Group 0 elements such as neon similar to that of ions such as a chloride ion?
\qquad
\qquad
\qquad

BLANK PAGE
DATA SHEET
The Periodic Table of the Elements
The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).

解 reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

