

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

ANDIDATE AME					
ENTRE JMBER			CANDIDATE NUMBER		

PHYSICAL SCIENCE

0652/02

Paper 2 (Core)

October/November 2007

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
Total		

This document consists of 15 printed pages and 1 blank page.

1 Fig. 1.1 shows the speed of a car as it moves along a straight, level track.

Fig. 1.1

(a)	What was the initial speed of the car?	m/s	[1]
(b)	Describe the motion of the car during		
	(i) the first 1.5 s,		
	(ii) from 1.5 s to 3.0 s.		
			[3]

(c) Calculate the distance the car travelled in the first 1.5 s.

Show your working.

distance = unit [3]

2 (a) Balance this equation for the burning of methane in a limited supply of air.

.....
$$CH_4 +O_2 \longrightarrowH_2O +CO$$
 [1]

(b) Explain why it is dangerous to release carbon monoxide into the air.

		[2]

(c) Name the compound of carbon formed when methane burns in a plentiful supply of air.

Γ 1	1
L'.	1

3 Complete Table 3.1 by giving the formula of each of these pollutants, naming a source of each, and a problem caused by releasing each into the atmosphere.

Table 3.1

pollutant	formula	source	problem
sulphur dioxide			
nitrogen dioxide			

[6]

4 Fig. 4.1 shows a view from above as a set of ripples move out from a point when a stone is thrown into a pond.

Fig. 4.1

- (a) (i) Mark on Fig. 4.1 one wavelength and label it λ .
 - (ii) A boy counts 12 waves hitting the bank in 5.0 s. Calculate the frequency of the waves. Show your working.

(b)	The water is shallower near the bank and the waves slow down. Suggest what effect that this will have on
	(i) the wavelength of the waves,
	(ii) the frequency of the waves.

frequency = ____ unit

[4]

[2]

5 Fig. 5.1 shows three test-tubes with pieces of different metal foil added to solutions containing metal ions.

The observations seen in each test-tube are also given.

Fig. 5.1

(a)	Use the results to work out the order of reactivity of the three metals.		
	most reactive		
	least reactive[2]		
(b)	Complete this equation for the reaction when magnesium is added to aqueous copper(II) sulphate.		
	Mg + CuSO ₄ → + [1]		
(c)	What happens when a piece of copper foil is put into a solution containing magnesium ions?		
	ra.		

6 A student has a cell, three identical resistors, and an ammeter. He builds the circuits shown in Fig. 6.1.

Fig. 6.1

(a) (i) In which circuit is the ammeter reading the highest?

(ii) Explain your answer.

[31

(b) The student now rebuilds circuit 2 as shown in Fig. 6.2.

Fig. 6.2

Explain, giving a reason, how the ammeter reading compares with the reading in the original circuit 2.

		[2]

(c) He now rebuilds circuit 3, as shown in Fig. 6.3.

Fig. 6.3

Explain, giving a reason, how the ammeter reading compares with the reading in the original circuit 3.

[2]

- 7 Sodium is an element in Group I of the Periodic Table.
 - (a) Complete Table 7.1 for an atom of sodium by reference to the Periodic Table shown on page 16.

Table 7.1

proton (atomic) number	
relative atomic mass	
number of neutrons in the nucleus	
arrangement of electrons in shells	

[4]

(b) Write down the name and symbol of a Group I element which is less reactive than sodium.

name	
symbol	[2]

8 Fig. 8.1 shows the apparatus used to compare the penetration of different radioactive emissions.

Fig. 8.1

Table 8.1 shows the count obtained in 2 minutes using different sources, with different absorbers.

Table 8.1

source	count with no absorber	count with paper absorber	count with aluminium absorber	count with lead absorber		
krypton-85	3270	3268	14	12		
americium-240	5854	1649	1644	103		

(a)	(i)	State, with reasons, the type or types of radiation emitted by the krypton-85 source.
	(ii)	State, with reasons, the type or types of radiation emitted by the americium-240 source.
		[6]
(b)	Car	re must be taken when handling or storing radioactive materials.
	(i)	State one precaution which must be used when handling radioactive materials.
	(ii)	State one precaution which must be used when storing radioactive materials.
		[2]

Eth	ane and ethene are gases which can be obtained from crude oil.	
(a)	State the formula of ethene.	
		[1]
(b)	Describe the difference in the structures of ethane and ethene.	
		[2]
(c)	Describe a test to distinguish between ethane and ethene.	
	test	
	result with ethene	
	result with ethane	
		[3]
(d)	What do we call the process of making poly(ethene) from ethene?	
		[1]

9

10 Fig. 10.1 shows the structure of a cathode ray tube.

Fig. 10.1

	(a)	Explain	how parts	K and A	produce	cathode rays.
--	-----	---------	-----------	---------	---------	---------------

[4]

(b) Fig. 10.2a and Fig. 10.2b show two waveforms displayed on the cathode ray oscilloscope.

The settings of the oscilloscope are the same in each case.

Fig. 10.2a

Fig. 10.2b

(i) State, giving a reason, which of the waves has the greater amplitude.

.....

(ii) State, giving a reason, which of the waves has the greater frequency.

11	Lim	esto	ne is an important raw material.	
	(a)	Giv	e the name and formula of the main calcium compound present in limestone.	
		nar	ne	
		forr	mula	[2]
	(b)	(i)	How can calcium oxide (lime) be made from limestone?	
				[1]
		(ii)	What needs to be added to calcium oxide to make calcium hydroxide (slake lime)?	ed
				[1]
		(iii)	The reaction to make calcium hydroxide is exothermic. What does exothermic mean?	
				[1]
	(c)	Wh	y do farmers sometimes spread calcium hydroxide on the soil in their fields?	
				[1]

12 Fig. 12.1 shows a ray of light incident on a parallel sided glass block.

Fig. 12.1

- (a) Complete the path of the light as it passes through and leaves the block.
- [3]

- (b) Mark on Fig. 12.1
 - (i) the angle of incidence and label it i,
 - (ii) the angle of refraction and label it r.

[2]

13	Chlorine	ne is a reactive element in Group VII of the Periodic Table.						
	(a) Wh	ny is chlorine often added to drinking water supplies?						
	•••••				[1]			
		Complete Table 13.1 by naming the type of bonding present in each of these substances.						
			Table	e 13.1				
			substance	type of bonding present				
		chlo	orine					
	hydrogen chloride							
	sodium chloride							
	[2]							
	(c) (i) What is the symbol for a chloride ion?							
	[1]							
	(ii) How many electrons are in the outer shell of a chloride ion?							
	[1]							
	(iii) How is the electron structure of Group 0 elements such as neon similar to that of ions such as a chloride ion?							
					[2]			

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	He 4 Helium	20 Neon 10 Ar Argon	84 Krypton 36	Xe Xenon 54	Rn Radon 86		Lu Lutetium 71	Lr Lawrencium 103
	II/		19 Fluorine 9 35.5 C1 Chlorine	80 Br Bromine	127 I lodine 53	At Astatine 85		Yb Ytterbium 70	
	 		16 Oxygen 8 32 S Sulphur 16	Selenium 34	128 Te Tellurium	Po Polonium 84		169 Tm Thulium 69	Md Mendelevium 101
	>		14 Nitrogen 7 31 9 Phosphorus 15	AS As Arsenic	122 Sb Antimony 51	209 Bis Bismuth 83		167 Er Erbium 68	Fm Fermium
	2		12 Carbon 6 Silicon 14	73 Ge Germanium 32	119 Sn Tin	207 Pb Lead		165 Ho Holmium 67	ES Einsteinium 99
	≡		11 B Boron 5 27 A I Aluminium	70 Ga Gallium 31	115 In Indium 49	204 T t Thallium 81		162 Dy Dysprosium 66	Çf Californium 98
				65 Zn Zinc 30	Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	BK Berkelium 97
				64 Copper 29	108 Ag Silver 47	197 Au Gold		Gadolinium 64	Curium Ourium
Group				59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95
S.G				59 Cobalt	103 Rh Rhodium 45	192 Ir Iridium 77		Samarium 62	Pu Plutonium 94
		Hydrogen 1		56 Fe Iron	Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Neptunium 93
				Manganese	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60	238 U Uranium 92
				52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59	Pa Protactinium 91
				51 Vanadium 23	Niobium A1	181 Ta Tantalum 73		140 Ce Cerium 58	232 Th Thorium
				48 T tranium 22	91 Zr Zirconium 40	178 Hf Hafnium 72			nic mass Ibol nic) number
				Scandium 21	89 ×	139 La Lanthanum 57 *	227 Ac Actinium 89	d series series	a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		Be Beryllium 4 24 Mg Magnesium 12	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series	∞ × ∞
	_		7 Lithium 3 23 Na Sodium 11	39 Potassium	Rb Rubidium 37	133 Cs Caesium 55	Fr Francium 87	*58-71 L 190-103	Key

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).