Intern		entilicate of occordary Education
PHYSICAL SC	IENCE	0652/03
Paper 3		October/Nevember 2005
Candidates answe No Additional Mate	er on the Question Pap erials are required.	1 hour 15 minutes ber.
READ THESE INSTRUC [*] Write your Centre number Write in dark blue or black	TIONS FIRST r, candidate number a	nd name on all the work you hand in. ovided on the Question Paper.
You may use a pencil for a Do not use staples, paper	any diagrams, graphs clips, highlighters, glu	, tables or rough working. ue or correction fluid.
The number of marks is g A copy of the Periodic Tat	iven in brackets [] at ble is printed on page	the end of each question or part question. 16.
The number of marks is g A copy of the Periodic Tab	iven in brackets [] at ble is printed on page	the end of each question or part question. 16. For Examiner's L
The number of marks is g A copy of the Periodic Tab	iven in brackets [] at ole is printed on page	the end of each question or part question. 16. For Examiner's L 1
The number of marks is g A copy of the Periodic Tab	iven in brackets [] at ole is printed on page	the end of each question or part question. 16. For Examiner's L 1 2
The number of marks is g A copy of the Periodic Tab	iven in brackets [] at ble is printed on page	the end of each question or part question. 16. For Examiner's L 1 2 3
The number of marks is g A copy of the Periodic Tab	iven in brackets [] at ole is printed on page	the end of each question or part question. 16. For Examiner's L 1 2 3 4
The number of marks is g A copy of the Periodic Tab	iven in brackets [] at ble is printed on page	the end of each question or part question. 16. For Examiner's U 1 2 3 4 5
The number of marks is g A copy of the Periodic Tab	iven in brackets [] at ble is printed on page	the end of each question or part question. 16. For Examiner's L 1 2 3 4 5 6
If you have been given a	iven in brackets [] at ole is printed on page	the end of each question or part question. 16. For Examiner's U 1 2 3 4 5 6 7
If you have been given a details. If any details is missing, please fill in you	iven in brackets [] at ole is printed on page label, look at the are incorrect or r correct details in	the end of each question or part question. 16. For Examiner's U 1 2 3 4 5 6 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
If you have been given a details. If any details missing, please fill in your the top	label, look at the are incorrect or r correct details in o of this page.	the end of each question or part question. 16. For Examiner's L
If you have been given a details. If any details missing, please fill in your the space given at the top Stick your personal label	label, look at the are incorrect or r correct details in o of this page. here, if provided.	the end of each question or part question. 16. For Examiner's L 1 2 3 4 5 6 7 6 7 8 9 10 10

UNIVERSITY of CAMBRIDGE International Examinations

1 Fig. 1.1 shows the arrangement of electrons in a lithium atom.

(a) Lithium and potassium are both Group I metals. Complete the diagram in Fig. 1.2 to show the arrangement of electrons in a potassium atom.

- [2]
- (b) When a small piece of lithium is dropped into a trough half filled with water a reaction takes place. Bubbles of the gas hydrogen are given off slowly and lithium hydroxide is formed.
 - (i) Write a balanced equation for this reaction.

(ii) Describe how you could prove that the gas given off is hydrogen. test result

1.	
2.	
	[2]

- **2** A ray of light enters a rectangular glass block at an angle of incidence of 66°. The glass has a refractive index of 1.45.
 - (a) Calculate the angle of refraction for this ray of light. Write down the equation that you use and show all your working.

[3]

(b) Draw a fully labelled diagram to show the refraction of the light as it enters and leaves the glass block.

3 Copper(II) oxide reacts with dilute sulphuric acid.

 $CuO + H_2SO_4 \longrightarrow CuSO_4 + H_2O$

In the preparation of copper(II) sulphate, copper(II) oxide is added to 20 cm^3 of sulphuric acid of 1.0 mol/dm³ concentration until no more reacts.

- (a) (i) Calculate the number of moles in the 20 cm^3 of sulphuric acid.
- moles of sulphuric acid = [1] (ii) How many moles of copper(II) sulphate are produced in the reaction? moles of copper(II) sulphate = [1] (iii) Calculate the relative formula mass, M_r , of copper(II) sulphate, CuSO₄. Show your working. *M*_r = [2] (iv) Calculate the mass of copper(II) sulphate, CuSO₄, formed. Show your working. mass = _____g [2] (b) Describe how crystals of copper(II) sulphate can be prepared from the mixture of excess copper(II) oxide and copper(II) sulphate solution obtained when the reaction stops. [3]

- 4 A player throws a ball, of mass 0.15 kg, horizontally. The ball has a constant acceleration for a time of 0.10s and then moves at a constant speed of 20.0 m/s for 0.80 s before being caught and brought to rest in a further time of 0.30 s. As the ball is caught it decelerates non-uniformly.
 - (a) On Fig. 4.1 draw a graph showing the speed of the ball from when it was thrown until the time it came to rest.

- [4]
- (b) Calculate the maximum kinetic energy of the ball. Show all your working.

maximum kinetic energy = [3]

(c) Calculate the acceleration of the ball during the first 0.10 s. Write down the equation that you use and show all your working.

acceleration = [3]

5

6

(a) When hydrogen burns the only product is water.Write a balanced equation for the burning of hydrogen.

			[2]			
(b)	 b) When petrol is burned in a car engine a number of products are formed. Some of these products cause pollution. These include carbon monoxide and oxides of nitrogen. 					
	(i)	How are the oxides of nitrogen removed from the exhaust gases of modern cars.				
			[1]			
	(ii)	Why may the presence of carbon monoxide in car exhaust systems cause a heaproblem?	alth			
			[1]			
(c)	lt h Sug	as been suggested that hydrogen may replace petrol as a fuel for cars. ggest one advantage and one disadvantage of using hydrogen instead of petrol.				
	adv	vantage				
	disa	advantage				
			[2]			

[2]

7

(b) Fig. 6.1 shows a method of measuring the mass of a uniform loaded ruler. The ruler is pivoted at the 18 cm mark.

(i) The ruler is uniform. What does this tell you about the position of its centre of mass?

.....[1]

(ii) The total length of the ruler is 80 cm. The 50 g mass is hung from the 8 cm mark on the ruler. Calculate the mass of the ruler. Show all your working.

mass of ruler = _____ g [4]

7 Powdered calcium carbonate is added to excess hydrochloric acid of three different concentrations, **A**, **B** and **C**.

 $CaCO_3 + 2HCl \longrightarrow CaCl_2 + CO_2 + H_2O$

In each experiment the same mass of powder is used and the acid is at the same temperature.

The volume of carbon dioxide gas given off is measured at time intervals. The results of these experiments are shown in Fig. 7.1.

Fig. 7.1

(i) Which of the three solutions of hydrochloric acid, A, B or C, is the most concentrated?
[1]
(ii) Explain how Fig. 7.1 shows your answer to (i) is correct.
[2]
(iii) Why do each of the three experiments give the same total volume of gas?
[1]
(b) A fourth experiment is carried out using hydrochloric acid solution A and the same mass of powdered calcium carbonate. This time the experiment is carried out at a higher temperature.

Sketch on Fig. 7.1 the result you would expect for this fourth experiment.

[2]

(c) (i) Calculate the number of moles in the 100 cm³ of carbon dioxide gas produced. (Assume the volume of carbon dioxide is measured at r.t.p. The volume of one mole of any gas is 24 dm³ at r.t.p.).

moles of carbon dioxide = [1]

(ii) Calculate the number of moles of calcium carbonate used to produce 100 cm³ of carbon dioxide gas.

moles of calcium carbonate = [1]

(iii) Calculate the mass of calcium carbonate used to produce 100 cm³ of carbon dioxide gas.
 Show your working.
 (The relative formula mass, *M*_r, of calcium carbonate = 100.)

mass of calcium carbonate = _____g [2]

For Examiner's Use

(a) (i) Name the process by which the Sun produces energy.

	[1]
(ii)	Explain what happens in this process.
	[3]
(b) Cal res The	Iculate the energy released in the Sun when its mass decreases by 1200 kg as a ult of this process. Write down the equation you use and show all your working. e speed of light = $3.0 \times 10^8 \text{ m/s}$.
	energy released =J [4]
Fig. 9.1	shows the graphical formulae of five organic compounds.
н—	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	A B C
	H = C = C H = H = H = H = H = H = H = H

Fig. 9.1

D

9

8

0652/03/O/N/05

Ε

(a)	(i)	Which two compounds are alkanes?
		[1]
	(ii)	Which compound dissolves in water to give an acidic solution?
		[1]
(b)	(i)	Describe a test to distinguish between compounds C and D .
		test
		result
		[2]
	(ii)	In industry compound D is made from compound C . Name the type of reaction that is used.
		[1]
(c)	Cor Dra	mpound D can be used to make a polymer. w the structure for this polymer.

[2]

10 Fig. 10.1 shows a circuit with a high resistance voltmeter being used to measure the e.m.f. of a cell.

Fig. 10.1

(a) Explain why the voltmeter must have a high resistance if it is to measure an accurate value of the e.m.f.

[2]

(b) Fig. 10.2 shows a cell with an internal resistance of 5 Ω . A voltmeter which has a resistance of 995 Ω is connected across the cell. The e.m.f. of the cell is 1.50 V.

(i) Calculate the current in the circuit.

current = _____A [3]

(ii)	13 Calculate the potential difference across the voltmeter.	For Examiner's Use
	potential difference = V [2]	
(iii)	Explain why this voltmeter gives a good approximation to the e.m.f. of the cell.	
	[2]	

BLANK PAGE

BLANK PAGE

15

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

	Elements
DATA SHEET	The Periodic Table of the

					16		7		
	0	4 Helium 2	20 Neon 40 Argon	84 Kr Krypton 36	131 Xe Xenon 54	Rn Radon 86		175 Lu Lutetium 71	Lawrencium 103
	ll>		19 9 35.5 Chlorine 17 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		173 Yb Vtterbium 70	Nobelium 102
	N		16 8 Oxygen 32 32 Sulphur 16	79 Selenium 34	128 Te ^{Tellurium} 52	PO Polonium 84		169 Thulium 69	Mendelevium 101
	>		14 Nitrogen 31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth		167 Er Erbium 68	Fermium 100
	≥		6 Carbon 6 28 28 Silicon	73 Ge Germanium 32	119 Sn 50	207 Pb Lead 82		165 Holm ium 67	Einsteinium 99
	≡		11 Boron 5 27 Atuminium 13	70 Ga Gallium 31	115 In Indium 49	204 T7 B1		162 Dysprosium 66	Cf californium 98
				65 Zn ^{Zinc}	112 Cd Cadmium 48	201 Hg ^{Mercury}		159 Tb ^{Terbium} 65	BK Berkelium 97
				64 Copper 29	108 Ag Silver	197 Au Gold 79		157 Gd Gadolinium 64	C C C C C C C C C C C C C C C C C C C
dno				59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95
Gre				59 Co 27	103 Rh Rhodium 45	192 Ir 1ridium		150 Sm Samarium 62	Plutonium 94
		Hydrogen		56 Fe Iron 26	101 Ruthenium 44	190 OSmium 76	_	Promethium 61	Neptunium 93
				55 Man Manganese 25	Tc Technetium 43	186 Re Rhenium 75	_	144 Neodymium 60	238 Uranium 92
				52 Ch romium 24	96 MO Molybdenum 42	184 V Tungsten 74		141 Pr Praseodymium 59	Protactinium 91
				51 Vanadium 23	93 Niobium 41	181 Ta Tantalum 73		140 Ce Cerium 58	232 Tho 100
				48 Ti ^{Titanium} 22	91 Zr Zirconium 40	178 Hafnium 72			nic mass bol nic) number
				45 Scandium 21	89 Yttrium 39	139 La Lanthanum 57 *	227 Actinium 89	d series eries	= relative ator= atomic sym= proton (aton
	=		9 Beryllium 24 Magnesium	40 Calcium 20	88 Strontium 38	137 Baa Baarium 56	226 Rad ium 88	anthanoid Actinoid s	• × ∞
	_		Lithium 3 23 23 23 23 10 8 0 dium	39 K Potassium 19	85 Rb Rubidium 37	133 CS Caesium 55	Fr Francium 87	*58-71 L 90-103	۹ Key

The volume of one mole of any gas is $24 \, dm^3$ at room temperature and pressure (r.t.p.).