Centre Number	Candidate Number	Name
-		GE INTERNATIONAL EXAMINATIONS ertificate of Secondary Education
PHYSICAL S	CIENCE	0652/02
Paper 2		October/November 2005
		1 hour 15 minutes
	wer on the Question Pap laterials are required.	
Write in dark blue or bla	per, candidate number a ack pen in the spaces pro	nd name on all the work you hand in. ovided on the Question Paper.
Do not use staples, pap Answer all questions. The number of marks is	ber clips, highlighters, glu	the end of each question or part question.
		For Examiner's Us
		1
		2
		3
		4
		5
		6
		7
		8
		9
If you have been giver	a label look at the	10
details. If any detail	s are incorrect or	11
missing, please fill in ye the space given at the		12
Stick your personal lab	el here, if provided.	13
		Total
05 11_0652_02/3RP		consists of 16 printed pages. /ERSITY of CAMBRIDGE
UCLES 2005		Inational Examinations [Turn c

1 (a) A glider is an aeroplane without an engine. Glider pilots use columns of rising warm air to lift their gliders to a greater height, as shown in Fig. 1.1.

2

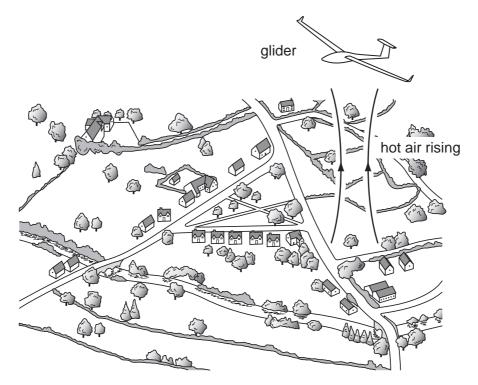


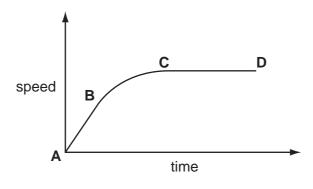
Fig. 1.1

(i) Name the process which causes the warm air to rise.

.....

(ii) Explain why the warm air rises.

[3]


(b) The warm air sometimes carries water vapour higher into the atmosphere where it changes to small water drops to form clouds.

Name the process when water vapour turns to liquid.

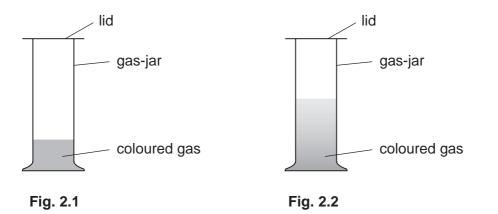
.....

[1]

- For Examiner's Use
- (c) As the water drops get larger they begin to fall. Fig. 1.2 shows a speed time graph of the fall of one of the water drops.

(i) Describe the motion of the water drop between points A and B.

.....


(ii) Describe the motion of the water drop between points C and D.

[3]

[1]

2 A coloured gas is put into the bottom of a gas-jar of air. The lid is quickly replaced on the jar. This is shown in Fig. 2.1.

After several minutes the coloured gas can be seen halfway up the jar. This is shown in Fig. 2.2.

(a) Name this process of one gas mixing slowly with another.

.....

(b) The molecules of the coloured gas move about quickly yet the process of mixing with the air is very slow.

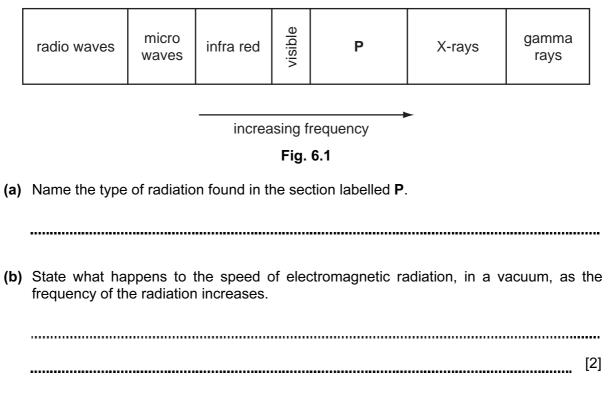
Explain why the mixing is slow.

[2]

- 3 The properties of iron can be changed by the controlled use of additives to form steel alloys.
 - (a) State one use of mild steel.

State **one** use of stainless steel. [2]

	(b)	Sta	piece of mild steel in everyday use is protected with paint. ainless steel does not need this protection. plain this difference.
			[2]
4			al-fired power station coal is burnt in a furnace. This heats water to provide steam to generator.
	(a)	Co	mplete the sentences below to explain the energy changes.
		In t	the furnace energy of the coal is converted to
			energy in the steam. This is then converted into
		ene	ergy at the generator. [3]
			r method of obtaining steam to drive a generator is to pump water deep into the . The water is heated by hot rocks.
	(b)	(i)	What name is given to this type of power station?
		(ii)	State one advantage of this method over the coal-fired power station.
			[2]
	(c)		plain how the generator is driven in a hydroelectric power station. In your answer er to relevant energy changes.
		•••••	[2]


5

5 (a) A method to separate and analyse mixtures uses a vertical strip of paper dipping into a solvent.

6

- (i) Name this method of separating mixtures.
- (ii) Some experiments using this method require a *locating agent* to show the positions of the components.
 Explain why a *locating agent* may be required.
 [1]
 (b) Bitumen is used to make roads.
 Describe how bitumen is obtained from the mixture of hydrocarbons in crude oil (petroleum).
 [2]

6 Fig. 6.1 shows the electromagnetic spectrum.

(c) The photograph in Fig. 6.2 shows a replacement joint in a person's arm.

Fig. 6.2

Name the part of the electromagnetic spectrum used to take this photograph.

.....

(d) Another method of obtaining images of internal organs is to use sound waves of frequency above the human threshold of hearing.

State the maximum frequency sound that a human can hear.

.....Hz [1]

© UCLES 2005

[Turn over www.theallpapers.com

[1]

			8	
7	(a)	Wh	en ethene, C_2H_4 , reacts with hydrogen in an addition reaction, an alkane is formed	ł.
		(i)	Name this alkane.	
				[1]
		(ii)	Draw a diagram to show the structure of this alkane.	
				[1]
	(b)	Wh	en ethene, C_2H_4 , reacts with steam in an addition reaction, an alcohol is formed.	
		(i)	Name this alcohol.	
				[1]
		(ii)	Draw a diagram to show the structure of this alcohol.	
				[1]
	(c)	Wh	en ethene, C_2H_4 , reacts with itself in an addition reaction, a polymer is formed.	
		(i)	Name this polymer.	
				[1]
		(ii)	Draw a diagram to show the structure of this polymer.	

For Examiner's Use 8 (a) Describe how you would carry out an experiment to find the magnetic field pattern around a bar magnet.

[4]

(b) On Fig. 8.1 draw the magnetic field pattern of the bar magnet.

S N	

Fig. 8.1

[3]

9 (a) Chlorine has two isotopes, ${}^{35}_{17}$ Cl and ${}^{37}_{17}$ Cl.

Complete Fig. 9.1 for these isotopes.

	³⁵ Cl	³⁷ C <i>l</i>
number of protons in nucleus	17	
number of neutrons in nucleus		20
arrangement of electrons in shells in the atom		

Fig. 9.1

[3]

(b) Draw a diagram to show the covalent bonding in a molecule of hydrogen chloride, HCl

[2]

(c) (i) Describe the formation of each of the ions in sodium chloride, NaCl, from the elements.
 [2]
 (ii) Explain how these ions are held together in the compound.

(d)	Explain why sodium chloride conducts electricity when liquid but not when solid.	
		[2]
(e)	Describe a chemical test for the chloride ion in solution.	
	test	
	result	[2]

			12	For
10	The	e not	ble gas, radon, is radioactive. Radon nuclei decay by emitting alpha-particles.	Examiner's Use
	(a)	(i)	Explain what is meant by the term <i>noble gas</i> .	
		(ii)	Explain what is meant by the term <i>alpha-particle</i> .	
			[3]	
	(b)	Cor	mplete the equation which shows the decay of a nucleus of radon-220.	
			²²⁰ ₈₆ Rn → Po + (alpha)	
			$^{220}_{86}$ Rn \longrightarrow Po + $^{\alpha}_{\alpha}$ (alpha) [2]	
	(c)	A s	ample consists of 36.0 μ g of radon-220. After a period of 3 minutes only 4.5 μ g of	
	. ,		on-220 remained.	
		Cal	culate the half-life of radon-220. Show your working.	
			half-life =minute(s) [3]	
11	Car	bon	monoxide and oxides of nitrogen are common pollutants of air.	
	Des	scrib	e how each pollutant is formed.	
		car	bon monoxide	
		oxio	des of nitrogen	
			[4]	

		13	For
12	(a) (i)	State the main method to obtain calcium oxide (lime) from calcium carbona (limestone).	ate Examiner's Use
		[1]
	(ii)	Complete the equation for this process.	
		CaCO₃ → +	[2]
	(iii)	The energy required to break the bonds in calcium carbonate is greater than t energy released when the products are formed.	he
		What does this show about the total energy change in the reaction?	
		[[1]
	(iv)	Describe a test to identify the gas produced in this process.	
		test	
		result[2]
	(b) Ca	lcium hydroxide (slaked lime) is used to treat acidic industrial waste products.	
	Na	me the main chemical process involved in this treatment.	
		r	11

.....

[1]

13 Fig. 13.1 shows two types of switch that can be used to control an electric light.

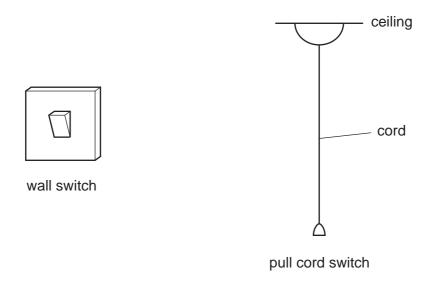
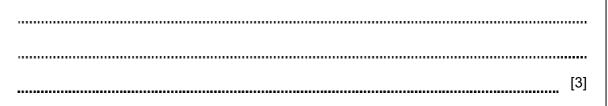



Fig. 13.1

(a) Explain why a pull-cord switch, not a wall switch, should always be used in a bathroom or shower-room.

(b) Fig. 13.2 shows part of a circuit that could be used to operate lights in a room.

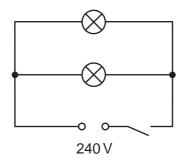


Fig. 13.2

The two lamps are identical and each takes a current of 0.25 A.

(i) Calculate the resistance of each lamp. Show your working and include the unit.

resistance = [3]

For Examiner's Use

(ii) What is the total current taken from the supply when both lamps are switched on?

current _____ A [1]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET The Periodic Table of the Elements

								Grc	Group								
_	=											≡	\geq	>	N	١١٨	0
							¹ Hydrogen										4 Helium 2
23 Lithium 23 Sodium	9 Beryllium 24 Magnesium	ε				-						11 Beron 5 27 Auminium 13	12 Carbon 6 28 28 28 14 14	14 Nitrogen 31 Phosphorus 15	16 Oxygen 32 Sulphur 16	19 Fluorine 35.5 C1 Chlorine	20 Neon 40 Ar 18 Ar
39 X Potassium	40 Calcium 20	45 Scandium 21	48 TT ^{Titanium}	51 Vanadium 23	52 Chromium 24	55 Mn Manganese 25	56 Fe Iron 26	59 Co ²⁷	59 Nickel 28	64 Copper 29	65 Zn ^{Zinc}	70 Gal lium 31	73 Ge Germanium 32	75 AS Arsenic 33	79 Selenium 34	80 B r omine 35	84 Krypton 36
85 Rb Rubidium 37	88 Srontium 38	89 Yttrium 39	91 Zr Zirconium 40	93 Nb Niobium 41	96 Mo Molybdenum 42	Tc Technetium 43	101 Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium 49	119 Sn 50	122 Sb Antimony 51	128 Te ^{Tellurium} 52	127 I lodine 53	131 Xe 54
133 CS Caesium 55	137 Ba Barium 56	139 La Lanthanum 57	178 Hf Hafnium 72	181 Ta Tantalum 73	184 V Tungsten 74	186 Re Rhenium 75	190 OS Osmium 76	192 Ir 1ridium 77	195 Pt Platinum 78	197 Au Gold 79	201 Hg ^{Mercury} 80	204 T Thallium 81	207 Pb Lead 82	209 Bi Bismuth	Po Polonium 84	At Astatine 85	Radon 86
Fr Francium 87	226 Rad ium 88	227 Actinium 89															
*58-71 l 90-103	58-71 Lanthanoid seri 90-103 Actinoid series	*58-71 Lanthanoid series 90-103 Actinoid series		140 Ce ^{Cerium}	141 Pr Praseodymium 59	144 Neodymium 60	Promethium 61	150 Sm Samarium 62	152 Eu 63	157 Gd Gadolinium 64	159 Tb ^{Terbium} 65	162 Dysprosium 66	165 HOI Holmium 67	167 Er Erbium 68	169 Tm ^{Thulium}	173 Yb Ytterbium 70	175 Lu Lutetium 71
b Key	σ 🗙	a = relative atomic mass X = atomic symbol b = proton (atomic) number	mic mass bol nic) number	232 Th 90	Protactinium 91	238 Uranium 92	Neptunium 93	Pu Plutonium 94	Am Americium 95	Cm Curium 96	BK Berkelium 97	Californium 98	Einsteinium 99	Fm Fermium 100	Mendelevium 101	Nobelium 102	Lr Lawrencium 103

The volume of one mole of any gas is $24 \, dm^3$ at room temperature and pressure (r.t.p.).

www.theallpapers.com

16