UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the NOVEMBER 2004 question paper

0652 PHYSICAL SCIENCE

0652/02

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 0652 (Physical Science) in the November 2004 examination.

	maximum	minimum mark required for grade:			
	mark available	А	С	Е	F
Component 2	80	n/a	47	34	25

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.

November 2004

INTERNATIONAL GCSE

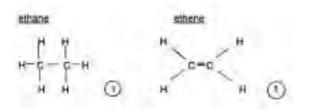
MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0652/02

PHYSICAL SCIENCE Paper 2

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE – NOVEMBER 2004	0652	2
1 (a)(i)	Moment = 5 ×8		[1]
	= 40 Ncm		[2]
	(-1 for incorrect/no unit)		
(ii)	40 Ncm (ecf)		[1]
(iii)	80 Ncm (ecf)		[1]
(b)(i)	Increases the moment		[1]
(ii)	Decreases the moment		[1]
(c)	(Electric) motor/ammeter etc. NOT generator/dynamo etc.		[1]
			Total [8]
2 (a)	Brownian (motion)		[1]
(b)	molecules		[1]
	collide		[1]
	larger molecules		[1] [1]
			Total [5]
3 (a)(i)	Convection		[1]
(ii)	Water expands on heating		[2]
	Becomes less dense Rises ANY TWO		
(b)(i)	Conduction		[1]
(ii)	Chemical		[1]
	Heat/Thermal Internal		[1]
	Exothermic (accept irreversible)		[1]
(c)	Insulating/lagging the tank – DO NOT accept vacuum or pair	nt silver	[1]
			Total [8]
4 (a)	Z because this contains P and Q from X <u>and</u> R from Y		[1]
			[1]
(b)	R because this has travelled furthest with the (moving) solvent	or	[1] [1]
	equivalent idea		[1]
			Total [4]


Page 2		abus Paper	
	IGCSE – NOVEMBER 2004 06	52 2	
5 (i)	Graphite √ 3 (covalent) bonds for each atom √ two dimensional structure √ layers √ strong bonds in layer and weak bonds between layers	[2] O	
(ii)	Diamond $\sqrt{4}$ (covalent) bonds for each atom $\sqrt{2}$ three dimensional structure $\sqrt{2}$ tetrahedral $\sqrt{2}$ all strong bonds ANY TWO	[2]	
	For both: NOT properties, NOT uses	Total [4]	
6 (a)(i)	Loss of one (outer) electron	[1]	
(ii)	Gain of one (outer) electron		
(b)	Transfer of (one) electron from K to I To form ions that attract each other (K ⁺ and I ⁻)	[1] [1]	
	Can be answered mainly by diagram	Total [4]	
7 (a)(i)	0.75 A	[1]	
(ii)	Use of R = V/ I R = 6 ohm	[1] [1] [1]	
(iii)	3 (ohm) (ecf)	[1]	
(b)	3.0 A	[1]	
(c)	Fig 7.2 larger current through each bulb (necf)	[1] [1]	
		Total [8]	
8 (a)(i)	CH ₄	[1]	
(ii)	(12 + 4) 16 (ignore any unit)	[1]	
(b)	$\begin{array}{ll} CH_4 + 2O_2 \to CO_2 + 2H_2O) \\ (\text{error carried forward}) & \text{all correct formulae} \\ & \text{correct balancing} \end{array}$	[1]	
	correct balancing	[1]	
		Total [4]	

Page 3		Mark Scheme	Syllabus	Paper
		IGCSE – NOVEMBER 2004	0652	2
9 (a)	Oxygen is remov			[1]
	from the copper of			[1]
	(or in terms of ele	ectron exchange)		
(b)	\checkmark high density	٦		[2]
(-)	√ coloured comp	ounds		
	high melting po		ANY TWO	
	$\sqrt{1}$ can be used as	s a catalyst (element or in compound) \int		
				Total [4]
10 (a)	Filter (to remove	excess magnesium)		[1]
10 (u)		rystallise or equivalent		[1]
(b)		t NOT 'glowing' splint		[1]
	"pops" (necf)			[1]
				Total [4]
11 (a)(i)	One ray correctly	v deflected towards the normal		[1]
ι (α)(i)		ect and consistent (not parallel to first not	converging)	[1]
	-		,	
(ii)	Normal drawn ar	nd <i>i</i> correctly marked		[1]
(iii)	Refraction			[1]
(b)	Some explanatio	n that the writing will be seen in a mirror		[1]
. ,	Use of the term I			[1]
				Total [6]
12 (a)(i)	lodine			[1]
(ii)		reactive than iodine <u>or</u> equivalent		[1]
(b)		eactive than chlorine <u>or</u> equivalent		[1]
				Total [3]
13	Step 1 Filtratior	1		[1]
	•	ve mud etc.		+[1]
	Step 2 Chlorina	tion (do not accort boiling)		[41
		ition (do not accept boiling) Icteria etc.		[1] + [1]
	(If in wrong ordei the first mark sco	r, mark as though in correct order but igno	ore	
		<i>ทธน</i>)		
				Total [4]

Total [4]

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – NOVEMBER 2004	0652	2

14 (a)

(b)	Alkenes have a double (carbon) bond but alkanes have only single bonds (accept but alkanes do not),	[1] [1]
	(Must have the double statement for both marks)	Total [4]
15 (a)(i) Nuclides with same number of protons but different number of neutrons	[1] + [1]
(ii)	Electron very fast moving/emitted in radioactive decay	[1] + [1]
(b)(i)	38 52 38	[1] [1] [1]
(ii)	Electron	[1]
(c)	39 0	[1] [1]

Total [10]

[2]