	Centre	Number	Number	
Candidate Name				

International General Certificate of Secondary Education CAMBRIDGE INTERNATIONAL EXAMINATIONS

PHYSICAL SCIENCE

0652/3

PAPER 3

OCTOBER/NOVEMBER SESSION 2002

1 hour 15 minutes

Candidates answer on the question paper. No additional materials are required.

TIME 1 hour 15 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided on the question paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

A copy of the Periodic Table is printed on page 16.

FOR EXAMINER'S USE			
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
TOTAL			

1 The table, Fig. 1.1, shows some of the properties of the elements in Group V of the Periodic Table.

element	density in g/cm ³	melting point in K	type of structure	type of oxide
nitrogen	0.0012	63	covalent molecule	acidic
phosphorus	2.2	317	covalent molecule	
arsenic	5.7	1090	metallic	amphoteric
antimony		905		amphoteric
bismuth	9.8	545	metallic	amphoteric

Fig.1.1

(a)	antimony and the type of oxide formed by phosphorus.	[3]
(b)	Suggest a reason why the melting points of the elements do not show a steady trend	d.
		[2]

2 Fig. 2.1 shows a force of 80 N applied to the pedal of a bicycle. The force is applied at a distance of 30 cm from the axis about which the gear wheel turns.

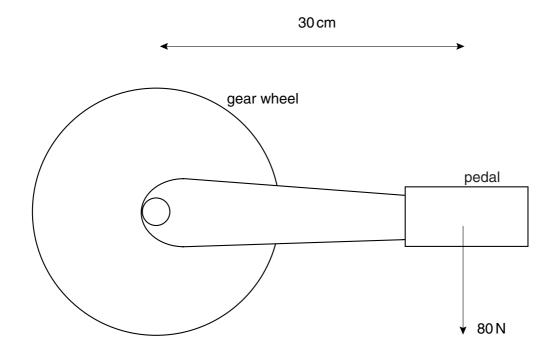


Fig. 2.1

(a) Calculate the moment of the force about the axis.

Write down the equation that you use and show your working.

		moment of the force = [3]
(b)	(i)	Explain what is meant by <i>power</i> .
		[1]
	(ii)	Suggest why the power input to the gear wheel changes with the position of the pedal.
		[6]

		extracted from the ore haematite, Fe ₂ O ₃ , in a blast furnace by reduction with carbon. Soon is put into the furnace in the form of coke.
(a)	(i)	Use the Periodic Table on page 16 of this paper to deduce the charge on an oxide ion.
		charge on oxide ion[1]
	(ii)	Use the answer to (i) and the formula of haematite to find the charge on the ion of iron present in haematite.
		charge on iron ion[1]
	(iii)	Write down the formula of the chloride which would be formed using the ion of iron in (ii).
		formula of chloride[1]
	(iv)	Iron forms another chloride named iron(II) chloride. Describe a simple chemical test to distinguish between a solution of the chloride of iron in (iii) and a solution of iron(II) chloride.
		Test
		Result with iron(II) chloride
		Result with chloride of iron in (iii)
		[3]
(b)	Wri	re a balanced equation for the reduction of haematite, Fe_2O_3 , by carbon.
		[2]
(c)	(i)	What other solid is mixed with the coke and iron ore in a blast furnace?
	(ii)	What is the reason for adding this substance to the furnace?
		[2]

BLANK PAGE

4 Fig. 4.1 shows the fruit of a plant. Its structure allows the fruit to fall slowly so that several fruits can be scattered by horizontal breezes.

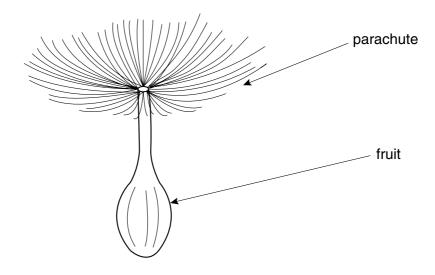


Fig. 4.1

The mass of the fruit and parachute of tiny hairs is 1.2 g.

(a) (i) Calculate the weight of the fruit and parachute. [g = 10 N/kg]

(ii) When the fruit falls at a constant vertical speed what is the magnitude of the upward force acting on it?

(iii) The fruit falls at 0.2 m/s. Calculate the kinetic energy of the fruit.

Write down the equation that you use and show your working.

- (b) The fruit falls to the ground from a height of 0.3 m in 1.5 s at a constant vertical speed.
 - (i) Calculate the gravitational potential energy of the fruit before it falls.Show your working.

gravitational	potential	enerav =	 [2]	
gravitational	potoritiai	- July -	 լ–յ	

(ii) On the grid of Fig. 4.2 show how the gravitational potential energy changes over the 1.5 s period. Mark numbers and units on the vertical axis.

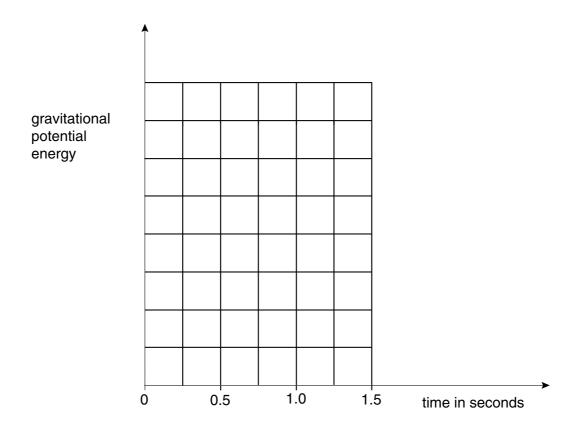


Fig. 4.2

[2]

(iii) Explain the energy change that occurs as the fruit falls through the air.

•	mag war	gnesi m di	uble salt magnesium sulphate can be prepared by reacting the insoluble solid turn oxide with sulphuric acid. The reaction is carried out by adding the solid to lute sulphuric acid until no more solid reacts. The salt is isolated by filtering and vaporating the solution until crystals of the hydrated salt are produced.
	(a)	Exp	lain why it is necessary to filter the solution before evaporating it.
			[1]
	(b)	Cal	cium sulphate is an insoluble salt, but calcium nitrate is soluble.
		(i)	Explain why the method described above cannot be used to prepare calcium sulphate crystals from calcium oxide.
			[1]
		(ii)	Suggest a suitable method for preparing calcium sulphate using sulphuric acid as one of the starting materials.

(c)	The equation	n for th	e reaction	between	magnesium	oxide	and	sulphuric	acid	may	be
	written:										

$$\rm MgO + H_2SO_4 \, \longrightarrow \, MgSO_4 + H_2O$$

(i) Calculate the relative molecular mass, M_r , for magnesium oxide.

You should use the Periodic Table on page 16 of this paper to help you answer this question.

 $M_{\rm r}$ of magnesium oxide = [1]

(ii) Calculate the number of moles in 8 g of magnesium oxide.

number of moles of magnesium oxide =[1]

(iii) Hence calculate the volume of sulphuric acid of concentration 2 mol/dm³ which will react with 8 g of magnesium oxide.

Show your working.

volume of sulphuric acid =[3]

6 Fig. 6.1 shows a section through a ripple tank. The dipper is made to bounce up and down by the rotation of a motor mounted on a pair of rubber bands. For each rotation of the motor one new wave is sent out.

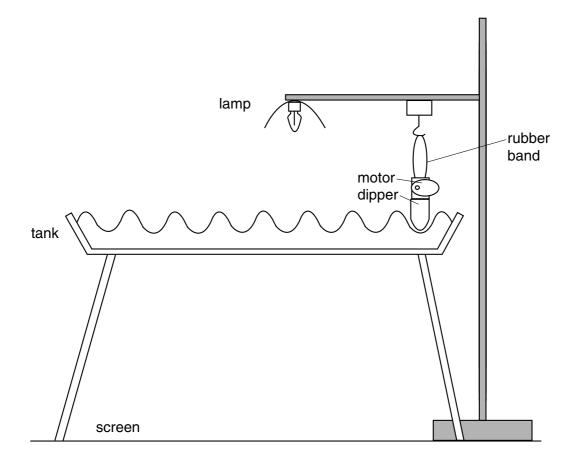


Fig. 6.1

a)	A series of alternate bright and dark lines can be seen on the screen below the tank.
	Suggest how this pattern is formed.
	[2]

(b)	Explain now you would measure the wavelength of the wave.
	[4]
(c)	The waves travel at a speed of 2.5 cm/s and their wavelength is 4.2 cm.
	Calculate how many times the motor must rotate in a minute.
	Write down the equation that you use and show your working.
	number of rotations per minute = [4]

Etha stea		C_2H_5OH , may be produced by the addition reaction between ethene, C_2H_4 , and
(a)	(i)	Write down the formula of methanol [1
	(ii)	Draw a dot-and-cross diagram to show the bonding in methanol.
		You need only show the outer shell electrons in each atom.
	<i>a</i>	[2]
	(111)	Explain why ethanol and methanol are considered to be members of the same homologous series. [1]
၁)	(i)	Write an equation for the addition reaction between ethene and steam.
		[2]
	(ii)	State two of the conditions necessary for this reaction to occur. 1
		2[2]
c)	Stat	e one industrial method of obtaining the ethene used to make ethanol.
		[1]

8 Fig. 8.1 shows a circuit in which an ammeter and voltmeter are included.

Calculate the ammeter and voltmeter readings in this circuit. You can only gain full marks for this question by writing down any equations that you use and showing your working.

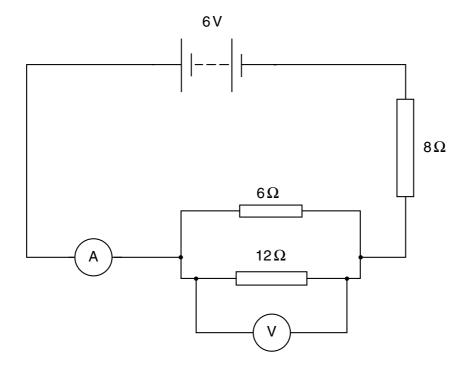


Fig. 8.1

ammeter reading = A
voltmeter reading = V

[6]

	iminium is a very reactive metal which is protected from corrosion by a layer of minium oxide. This oxide has amphoteric properties.
(a)	Explain why the oxide layer formed on aluminium protects it from corrosion but iron is not protected by the formation of a layer of rust.
	[2]
(b)	Oven cleaners often contain sodium hydroxide to help remove fat. Explain why such a cleaner should not be used on aluminium utensils.
	[2]
(c)	Aluminium is not extracted from its ore by reduction with carbon.
	(i) Name the main ore of aluminium. [1]
	(ii) Suggest a reason why aluminium cannot be extracted by reduction with carbon.
	[1]

10 (a) Complete the following sentences about transformers using **only** words from the list. Each word may be used once, more than once or not at all.

changing	constant	current	direct	induction			
output	primary	resistance	voltage	waves			
Transformers wo	ork using the pr	inciple of electro	omagnetic				
Α	current i	n the	co	il generates a vol	Itage		
across the secon	dary coil. In a s	tep-up transforme	er the output .				
is greater than the	e input voltage.				[4]		
A step-down trans 6 V.	sformer with a p	rimary coil of 500) turns is used	to transform 120	V to		
Calculate the number of turns on the secondary coil.							
Show all your wor	rking.						

(b)

number of turns = [2]

The Periodic Table of the Elements **DATA SHEET**

C C C C C C C C C C	Beryllium Wagnesium 12 Calcium 20 Calcium 20 Strontium 38 Strontium 38	Scandium 2.1 Vittium 39 Vittium 39	48 Titanium 22 Tizonium 40 T78	51 Vanadum 23 93 Niobium 41 Niobium 181	Chromium 24 96 Molybdenum 42 Moy Molybdenum 42 184	S5 WM Manganese 25 Technetium 43 186 186	# Hydrogen 1	Granding Separate Cobalt Separate Cobalt Separate Cobalt Separate	1 Hydrogen 1 102 106 108 108 109	Elemen 64 Cu Copper 108 Ag Silver 47 107		### Parameter 11 11 11 12 12 12 12 1	12 Carbon 12 Silicon 14 Silicon 14	Nitrogen Nitrogen Nitrogen 7 Phoesphorus 15 As Arsenic 33 Arsenic 33 Antimony 51	V 16 O O O O O O O O O	VII 19 Fluorine 9 38.5 CL Chlorine 17 Bromine 35 CL Chlorine 127 LZ7 LZ7	131 X X senon
Caesium 55	137 Ba Barium 56	139 La Lanthanum 57 *	178 Hf Hafnium 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 Ir Iridium 77	195 Pt Platinum 78	197 Au Gold	Hg Mercury 80	204 T (Thallium 81	207 Pb Lead 82	209 Bismuth 83	Po Polonium 84	At Astatine 85	Radon 86
Fr Francium 87	226 Ra Radium	Actinium + 89 + 1															
*58-71 L †90-103	*58-71 Lanthanoid series †90-103 Actinoid series	d series series		Cerium	Praseodymium	Neodymium	Pm Promethium	Samarium	152 Eu Europium	157 Gd Gadolinium	159 Tb Terbium	Dy Dysprosium	165 Ho Holmium	167 Er Erbium	Tm Thulium	Yb Ytterbium	175 Lu Lutetium

169	Ę	Thulium	69	Mendelevium 101	
167	ш	Erbium	89	Fm Femium	
	운		29	Einsteinium	
162	ò	Dysprosium	99	Californium	
159	Д	Terbium	92	Bk Berkelium	
157	В	Gadolinium	64	Curium 96	
152	Eu	Europium	63	Am Americium	
150	Sm	Samarium	62	Pu Plutonium	
	Pm	Promethium	61	Neptunium	
144	PZ	Neodymium	09	Luanium 92	
141	፵	Praseodymium	29	Pa Protactinium	
140	පී	Cerium	58	232 Tho Thorium	

ב

Nobelium Nobelium

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Key

b = proton (atomic) number

a = relative atomic mass X = atomic symbol