

## **INTERNATIONAL GCSE**

MARKING SCHEME

**MAXIMUM MARK: 40** 

**SYLLABUS/COMPONENT: 0652/01** 

PHYSICAL SCIENCE
Paper 1 (Multiple Choice)

| Page 1 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0652     | 1     |

| Question<br>Number |   |    | Key |
|--------------------|---|----|-----|
| 1                  | С | 21 | Α   |
| 2                  | В | 22 | С   |
| 3                  | В | 23 | D   |
| 4                  | С | 24 | С   |
| 5                  | С | 25 | D   |
|                    |   |    |     |
| 6                  | Α | 26 | В   |
| 7                  | D | 27 | Α   |
| 8                  | В | 28 | Α   |
| 9                  | В | 29 | D   |
| 10                 | С | 30 | D   |
|                    |   |    |     |
| 11                 | D | 31 | В   |
| 12                 | Α | 32 | Α   |
| 13                 | D | 33 | Α   |
| 14                 | D | 34 | В   |
| 15                 | В | 35 | D   |
|                    |   |    |     |
| 16                 | D | 36 | D   |
| 17                 | В | 37 | Α   |
| 18                 | В | 38 | В   |
| 19                 | С | 39 | Α   |
| 20                 | Α | 40 | D   |

**TOTAL 40** 



# **INTERNATIONAL GCSE**

MARKING SCHEME

**MAXIMUM MARK: 60** 

**SYLLABUS/COMPONENT: 0652/02** 

PHYSICAL SCIENCE Paper 2 (Core)

| Page 1 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0652     | 2     |

| 1. | 15      | 1 |     |
|----|---------|---|-----|
|    | 14      | 1 |     |
|    | 2, 8, 4 | 1 | (3) |

# 2. (a) (i) Any three of:

circuit complete current in coil core magnetised

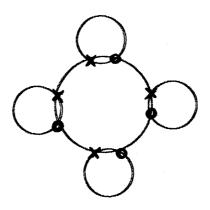
armature attracted to the core 1 +1 +1 (3 max)

(ii) soft iron loses its magnetism easily EITHER steel retains its magnetism OR so that contacts re-open when S is opened

1 (2)

1

1


**(b)** EITHER use of R = V/I (in any form)

OR R = 12/4 (in any form) R = 3 Ohm

1 1 (3)

Total 8

#### 3. (a) (i)



2

(ii) covalent

(3)

(b) (i) CH<sub>3</sub>OH (CH<sub>4</sub>O or similar = 1 compensation) 2

(ii) 12 + 4 + 16 = 32 (ignore units)

(3)

| Page 2 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0652     | 2     |

- 4. (a) (i) Evidence of both outer rays converging after leaving lens and central ray straight 1
   all three rays pass through a single point on central ray +1
  - (ii) focal length correctly marked +1 (3)
  - (b) (i) i correctly marked 1
    - (ii) ray reflected so that i = r 1 (2)

- 5. (a) Bromine atom takes electron from iodide ion 1
  EITHER to become bromide ion
  OR and replaces iodide/forms potassium bromide 1 (2)
  - (b)
     Ethane
     Ethene

     H
     H
     H
     H
     H
     H
     H
     H
     H
     H
     H
     H
     H
     H
     H
     H
     H
     H
     H
     H
     H
     H
     H
     H
     H
     H
     No change in colour 1
     goes colourless 1 (or correct formula)
     (4)

Total 6

- 6. (a) (i) mercury or alcohol 1
  - (ii) 35 ± 1 1
  - (iii) Make Hg move further/increase sensitivity 1 (3)
  - (b) (i) cools 1 liquid contracts 1
    - (ii) correct position at 0 1 (3)

| Page 3 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0652     | 2     |

| 7. (a)  | OR      | rease the potential energy of the molecules<br>do work in separating the molecules<br>inst intermolecular forces/bonds | 1<br>1      | (2)     |
|---------|---------|------------------------------------------------------------------------------------------------------------------------|-------------|---------|
| (b)     |         | ecules are moving around randomly ead in all directions                                                                | 1<br>1      | (2)     |
|         |         |                                                                                                                        |             | Total 4 |
| 8. (a)  | (i)     | refraction                                                                                                             | 1           |         |
|         | (ii)    | arrow drawn at right angles to the refracted waves                                                                     | 1           | (2)     |
| (b)     | (i)     | less                                                                                                                   | 1           |         |
|         | (ii)    | the same                                                                                                               | 1           |         |
|         | (iii)   | less                                                                                                                   | 1           | (3)     |
|         |         |                                                                                                                        |             | Total 5 |
| 9. (a)  | Нус     | drochloric                                                                                                             | 1           | (1)     |
| (b)     | (i)     | Carbon dioxide                                                                                                         | 1           | (1)     |
|         | (ii)    | Bubble through limewater goes cloudy/milky                                                                             | +1<br>+1    | (2)     |
| (c)     |         | er<br>aporate (to dryness)                                                                                             | 1<br>+1     | (2)     |
|         |         |                                                                                                                        |             | Total 6 |
| 10. (a) | (ma     | ample 2 because force moves<br>ax 1 if box/boy moves)<br>ereas in 1 the force is stationary                            | 1<br>1      | (2)     |
|         | (No     | te: there is no credit for correct answer without some form                                                            | า of explar | nation) |
| (b)     | 18<br>N |                                                                                                                        | 1<br>1      | (2)     |
| (c)     |         | elerates<br>formly/constantly/(steadily?)                                                                              | 1<br>+1     | (2)     |

| Page 4 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0652     | 2     |
|        |                                |          |       |

| 11. (a) | hydrogen loses electron in the formation of H <sub>2</sub> O molecule                                |         | 1<br>1 | (2) |
|---------|------------------------------------------------------------------------------------------------------|---------|--------|-----|
| (b)     | Energy given out on combustion                                                                       |         | 1      | (1) |
| (c)     | On combustion the <u>only</u> product is water (OR no products of combustion/pollutants except water | 1<br>1) | 2      | (2) |





# **INTERNATIONAL GCSE**

MARKING SCHEME

**MAXIMUM MARK: 80** 

**SYLLABUS/COMPONENT: 0652/03** 

PHYSICAL SCIENCE Paper 3 (Extended)

| Page 1 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0652     | 3     |

| 1 | (a) |     | Covalent molecules $(N_2)$ ; weak forces between (non-polar) molecules; $\therefore$ low B. Pt. $\rightarrow$ gas at room temperature | [3]       |
|---|-----|-----|---------------------------------------------------------------------------------------------------------------------------------------|-----------|
|   |     |     | Marks can be in either (i) or (ii)                                                                                                    |           |
|   | (b) |     | Amphoteric; mid-way between basic and acidic oxides                                                                                   | [2]       |
|   | (c) |     | lons have same charge in same Group; but smaller ions attract electrons more strongly                                                 | [2]       |
|   | (d) |     | PCl <sub>3</sub> <u>OR</u> PCl <sub>5</sub>                                                                                           | [1]       |
|   |     |     | Question                                                                                                                              | Total [8] |
| 2 | (a) |     | equation                                                                                                                              | [1]       |
|   |     |     | correct substitution                                                                                                                  | [1]       |
|   |     |     | 36.7 m/s <sup>2</sup>                                                                                                                 | [1]       |
|   | (b) |     | k.e. equation                                                                                                                         | [1]       |
|   |     |     | working                                                                                                                               | [1]       |
|   |     |     | 4.5(4) J                                                                                                                              | [1]       |
|   | (c) |     | g.p.e. equation                                                                                                                       | [1]       |
|   |     |     | working                                                                                                                               | [1]       |
|   |     |     | 2.0(3) J                                                                                                                              | [1]       |
|   | (d) | (i) | loose but correct idea of how well something is done                                                                                  | [C1]      |
|   |     |     | clear statement of idea of ratio of input to effective output work/energy/power                                                       | [2]       |

| Page 2 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0652     | 3     |

|   |     | (ii) | not efficient                                                                | [1]  |
|---|-----|------|------------------------------------------------------------------------------|------|
|   |     |      | clear statement of reason why not                                            | [1]  |
|   |     |      | first incorrect or missing unit only incurs penalty of -1                    |      |
|   |     |      | Question Total [                                                             | 13]  |
| 3 | (a) |      | Light can cause Ag <sup>+</sup> ions → Ag atoms; bottle keeps out light rays | [2]  |
|   | (b) |      | Na reacts violently with air and water; paraffin is inert and covers surface | [2]  |
|   | (c) |      | Easily picks up water vapour → blue hydrate; desiccator keeps air dry        | [2]  |
|   | (d) |      |                                                                              | [2]  |
|   |     |      | Question Total                                                               | [8]  |
| 4 | (a) |      | correct order: image, object, lens, focus (or reversed)                      | [1]  |
|   |     |      | either ray refracted correctly                                               | [1]  |
|   |     |      | correct construction                                                         | [1]  |
|   | (b) |      | virtual                                                                      | [1]  |
|   |     |      |                                                                              | [1]  |
|   |     |      | correct measurement of candidate's distance from lens, upright               | [1]  |
|   | (c) |      | magnifying glass/lens to correct long sight etc.  Question Total             | [1]  |
|   |     |      | Question Total                                                               | ۲, ۱ |

| Page 3 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0652     | 3     |

5 (a) Mobile electrons (sea of electrons) <u>NOT</u> free electrons [1]

(b) Unequal sizes of ions in alloy; give uneven (lumpy) layers; which cannot slide past each other easily; hence alloy is less malleable [4]

(c) (i) Ca, Sr, Ba <u>OR</u> Ra [1]

Gradually dissolve

Allow: Alkaline solution

Question Total [8]

Question Total [8]

[2]

6 (a) max voltage = 0.4 V [1]

min voltage = 0.5 V [1]

(b) mention of electromagnetic induction [1]

idea of flux cutting or similar [1]

(c) positive and negative peak [1]

flux cuts coil in opposite directions [1]

1<sup>st</sup> peak lower [1]

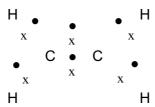
rate of flux cutting less [1]

Any two **pairs**of answers,
i.e. statement

1<sup>st</sup> peak wider and consistent explanation

magnet moving slower - time longer

flat middle section


zero rate of flux cutting

| Page 4 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0652     | 3     |

| 7 | (a) | (i)   | Charge on ion is +2 (oxidation number +2)                  | [1]       |
|---|-----|-------|------------------------------------------------------------|-----------|
|   |     |       | Allow: - Valency is 2                                      |           |
|   |     | (ii)  | Calcium has only one possible oxidation number (valency)   | [1]       |
|   | (b) | (i)   | 1000 cm <sup>3</sup> contains 1 mole                       | [1]       |
|   |     |       | ∴ 50 cm³ contains 0.050 moles                              |           |
|   |     | (ii)  | 1 mole CuCO <sub>3</sub> → 2 moles acid                    | [1]       |
|   |     |       | ∴ 0.025 moles CuCO <sub>3</sub> → 0.050 moles acid         |           |
|   |     | (iii) | 64 + 12 + 3 x (16) [1] = 124 [1]                           | [2]       |
|   |     | (iv)  | Mass = Moles x $M_r$ OR Mass = 0.025 x 124 [1] = 3.1 g [1] | [2]       |
|   |     |       | Question                                                   | Total [8] |
|   |     |       |                                                            |           |
| 8 | (a) |       | idea of voltage                                            | [C1]      |
|   |     |       | max terminal p.d./open circuit p.d. or other definition    | [2]       |
|   | (b) |       | idea of high resistance implies low current                | [C1]      |
|   |     |       | idea that voltmeter must drop vast majority of voltage     | [2]       |
|   | (c) | (i)   | equation                                                   | [1]       |
|   |     |       | 102 Ω used                                                 | [1]       |
|   |     |       | 1.47 x 10 <sup>-2</sup> A                                  | [1]       |
|   |     | (ii)  | use of current in (i) and 100 $\Omega$                     | [1]       |
|   |     |       | 1.47 V (e.c.f.)                                            | [1]       |
|   |     | (iii) | larger resistance voltmeter                                | [1]       |
|   |     |       | smaller current                                            | [1]       |
|   |     |       | less voltage dropped across internal resistance            | [1]       |
|   |     |       | first incorrect or missing unit only incurs penalty of -1  |           |
|   |     |       | Question                                                   | Total 12  |

| Page 5 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0652     | 3     |

9 [2] ([1] for C=C, [1] for filled shells) (a)



- (b) [2] Alkenes have C=C bond; needs at least 2 carbon atoms
- (i)  $C_4H_{10} \rightarrow 2C_2H_4 + H_2$ ([1] for formulae, [1] for balance) (c) [2]
  - (ii) High temp; high Pressure OR catalyst [2]
    - Question Total [8]



## INTERNATIONAL GCSE

MARKING SCHEME

**MAXIMUM MARK: 30** 

**SYLLABUS/COMPONENT: 0652/05** 

PHYSICAL SCIENCE Practical

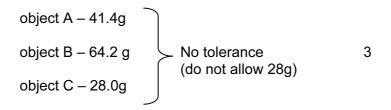
| Page 1 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0652     | 5     |

| 1 (a) (iii) | a reading for h <sub>o</sub> 5 readings taken (-1 if not in g) force calculated correctly extension calculated (deduct 1 if not in mm) | 4  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------|----|
| (b)         | axes labelled correctly sensible scale plotting correctly best line drawn goes through or would go through origin                      | 4  |
| (c)         | extension read correctly or calculated                                                                                                 | 1  |
| (d)         | proportional (2) allow one if says extension increases by fixed amount for fixed force                                                 | 2  |
| (e)         | line correctly drawn and labelled                                                                                                      | 1  |
| (f)         | read extension use graph calculate in g or kg using correct number, i.e. /10 to kg or x 100 to g                                       | 3  |
|             | Total                                                                                                                                  | 15 |
| 2 (a)       | each metal correct as -ve three values of p.d. to be within 0.2V of SV                                                                 | 1  |
| (c)         | magnesium with a suitable explanation                                                                                                  | 2  |
| (d)         | correct order Mg, Zn, Cu                                                                                                               | 1  |
| (e)         | bubbling, colour fades, black/brown deposit, magnesium disappears or other suitable observation                                        | 3  |
|             | magnesium is displacing copper ion (some reference to electron movement or ion changes is essential to score both marks)               | 2  |
| (f)         | test with each metal<br>note polarity<br>compare this polarity with the other three                                                    | 3  |

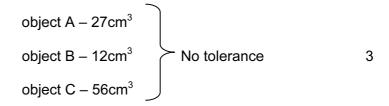


# INTERNATIONAL GCSE

MARKING SCHEME


**MAXIMUM MARK: 60** 

**SYLLABUS/COMPONENT: 0652/06** 


PHYSICAL SCIENCE Alternative to Practical

| Page 1 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0652     | 6     |

1 (a) Masses:



(b) Volumes:



- (c) Density of object C = 28/56 = 0.5 (allow 1 mark for correct substitution but incorrect answer) (allow ecf from (a) and (b)) 2
  - unit g/cm³ (mark is independent of answer to calculation)
- (d) object C would float [1]
  - because it is less dense than water (OWTTE) [1] (explanation must relate to relative densities of object C and water)
  - do NOT allow independent answers, i.e. correct explanation MUST be given to score first mark.
  - (allow converse answer if candidate's value for part (c) is >1)
- (e) some water would be left in the beaker when transferring to the measuring cylinder

do NOT allow 'the experiment/results is/are not accurate'

Total 12

1

1

2

| Page 2 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0652     | 6     |

| 2 (a) | Magnesium            | copper [1]          | pd = 2.0 [1] (do NOT allow <b>2</b> ) | 2 |
|-------|----------------------|---------------------|---------------------------------------|---|
|       | Zinc                 | copper [1]          | pd = 1.1 [1]                          | 2 |
| (b)   | most negativ         | e = magnesium       |                                       | 1 |
|       | most positive        | e = copper          |                                       | 1 |
| (c)   | magnesium,           | zinc, copper        |                                       | 1 |
| (d)   | find the p.d.        | with each of the    | other metals [1]                      |   |
|       | note which n         | netal is positive/i | negative[1]                           |   |
|       | metal X is po<br>[1] | ositive with a mo   | re reactive metal and vice versa      | 3 |
|       | Answers mu           | st relate to the e  | xperiment used in the question.       |   |

| Page 3 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0652     | 6     |

| Page 4 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0652     | 6     |

| 4 (a) (i) | Blue/Dark green (must be <b>COLOUR</b> i.e. <i>NOT pH number</i> ) (do NOT allow 'purple')   |   |  |
|-----------|----------------------------------------------------------------------------------------------|---|--|
|           | Ammonia/gas is alkali(ne) (allow 'basic/base')                                               | 1 |  |
| (a) (ii)  | Red                                                                                          | 1 |  |
| (b)       | (Light) Green                                                                                | 1 |  |
|           | Gases <b>neutralise</b> each other ( <b>NOT</b> one gas is acidic and the other is alkaline) | 1 |  |
| (c) (i)   | Ammonia moves faster                                                                         | 1 |  |
| (c) (ii)  | Because it has smaller particles (allow converse)                                            | 1 |  |
| (d)       | Spreading out of particles (OWTTE)                                                           | 1 |  |

| Page 5 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0652     | 6     |

| 5 (a) (i) | Crystal dissolved [1] (do NOT allow 'melted')                                    |   |  |
|-----------|----------------------------------------------------------------------------------|---|--|
|           | Particles spread out/diffused into the liquid [1]                                | 2 |  |
| (a) (ii)  | Any TWO from: Stir [1] Heat/warm [1]                                             |   |  |
|           | Shake [1]                                                                        | 2 |  |
| (b)       | Alkali(ne)/has pH greater than 7                                                 | 1 |  |
| (c) (i)   | Mixed with water/water has been added                                            | 1 |  |
| (c) (ii)  | Alkali and acid have reacted [1] so the solution is neutral/pH 7 [1]             | 2 |  |
| (c) (iii) | Alkali is in excess (OWTTE) (do NOT allow 'the acid has not reached the alkali') | 1 |  |
| (c) (iv)  | Calcium Hydroxide + Ethanoic Acid ———▶ Calcium Ethanoate + Water                 | 1 |  |

| Page 6 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0652     | 6     |
|        |                                | ,        |       |

| 6 (a)   | Mass of beaker = 43.4g                                                                                                               | 1 |
|---------|--------------------------------------------------------------------------------------------------------------------------------------|---|
|         | Mass of beaker + water = 93.6g                                                                                                       | 1 |
|         | Mass of beaker + sodium chloride solution = 108.6g                                                                                   | 1 |
| (b) (i) | Mass of sodium chloride solution = $108.6 - 43.4 = 65.2g$ (allow ecf from (a))                                                       | 1 |
| (ii)    | Mass of sodium chloride crystals = $108.6 - 93.6 = 15.\underline{0}$ g (allow ecf from (a)) (do NOT allow 15g)                       | 1 |
| (c)     | Volume = 55 cm <sup>3</sup>                                                                                                          | 1 |
| (d)     | (b) (i) and (c) (both required for mark)                                                                                             | 1 |
|         | (accept values quoted (allow ecf)) (allow calculated value of density e.g. 65.2/55 or 1.19g/cm³ (allow ecf from candidate's values)) |   |
| (e)     | Place hexane in measuring cylinder to a known volume [1]                                                                             |   |
|         | Add 15g of sodium chloride to the hexane [1]                                                                                         |   |
|         | Note new volume in measuring cylinder and subtract original volume of hexane [1]                                                     | 3 |

Grade thresholds taken for Syllabus 0652 (Physical Science) in the June 2003 examination.

|             | maximum           | minimum mark required for grade: |    |    |    |
|-------------|-------------------|----------------------------------|----|----|----|
|             | mark<br>available | А                                | С  | Е  | F  |
| Component 1 | 40                | -                                | 27 | 21 | 17 |
| Component 2 | 60                | -                                | 32 | 21 | 18 |
| Component 3 | 80                | 47                               | 29 | -  | -  |
| Component 5 | 30                | 21                               | 17 | 13 | 11 |
| Component 6 | 60                | 54                               | 43 | 27 | 24 |

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A\* does not exist at the level of an individual component.