ADDITIONAL MATHEMATICS

 4037/01, 0606/01Paper 1
October/November 2009
MARK SCHEME
Maximum Mark : 80

IMPORTANT NOTICE

Mark Schemes have been issued on the basis of one copy per Assistant examiner and two copies per Team Leader.

1(i) $2 a^{3}-7 a^{2}+7 a^{2}+16=0$ leading to $a^{3}=-8, \quad a=-2$ (ii) $\begin{aligned} & 2\left(-\frac{1}{2}\right)^{3}-7\left(-\frac{1}{2}\right)^{2}-14\left(-\frac{1}{2}\right)+16 \\ & =21 \end{aligned}$	$\begin{array}{ll}\text { M1 } & \\ \text { A1 } & \\ & \\ & \end{array}$ M1 A1 [2]	M1 for use of $x=a$ M1 for substitution of $x=-\frac{1}{2}$
$\begin{array}{r} 2 \text { (i) } \\ \left(\begin{array}{llll} 6 & 3 & 1 & 2 \\ 3 & 2 & 4 & 3 \\ 2 & 5 & 5 & 0 \\ 1 & 2 & 2 & 7 \end{array}\right)\left(\begin{array}{l} 5 \\ 3 \\ 2 \\ 1 \end{array}\right)=\left(\begin{array}{l} \text { (ii) } \\ 43 \\ 32 \\ 35 \\ 22 \end{array}\right) \end{array}$	B1,B1 $[2]$ B2,1,0	B1 for each matrix, must be in correct order -1 for each error
$\begin{gathered} 3 \quad 4(2 k+1)^{2}=4(k+2) \\ 4 k^{2}+3 k-1=0 \\ \text { leading to } k=\frac{1}{4},-1 \end{gathered}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & \\ & \\ \text { M1 } & \\ \text { A1 } & \\ & \end{array}$	M1 for use of ' $b^{2}-4 a c$ ' Correct quadratic equation M1 for correct attempt at solution A1 for both 1 values
$\begin{aligned} & 4(13-3 y)^{2}+3 y^{2}=43 \\ & \left(\text { or } x^{2}+\frac{(13-x)^{2}}{3}=43\right) \\ & 6\left(2 y^{2}-13 y+21\right)=0 \\ & \left(\text { or } 2\left(2 x^{2}-13 x+20\right)=0\right) \\ & (2 y-7)(y-3)=0 \\ & (\text { or }(2 x-5)(x-4)=0 \\ & y=3 \text { or } \frac{7}{2}\left(x=\frac{5}{2} \text { or } 4\right) \\ & \left(\text { or } x=4 \text { or } \frac{5}{2}\left(y=\frac{7}{2} \text { or } 3\right)\right. \text {) } \end{aligned}$	A1 M1 A1,A1	M1 for eliminating one variable A1 for correct quadratic M1 for correct attempt at solving quadratic A1 for each correct pair
5 (i) $\begin{gathered} (3+\sqrt{2})^{2}+(3-\sqrt{2})^{2}=22 \\ \mathrm{AC}=\sqrt{22} \end{gathered}$ (ii) $\tan A=\frac{3-\sqrt{2}}{3+\sqrt{2}}$ $\frac{(3-\sqrt{2})(3-\sqrt{2})}{(3+\sqrt{2})(3-\sqrt{2})}=\frac{11-6 \sqrt{2}}{7}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { M1 } \\ & \\ & \text { M1] } \\ & \text { M1, A1 } \\ & \quad[3] \\ & \hline \end{aligned}$	M1 for use of Pythagoras M1 for correct ratio M1 for rationalising

$\begin{gathered} 10 \text { (i) } \frac{\mathrm{d} y}{\mathrm{~d} x}=9 x^{2}-4 x+2 \\ \text { at } P \text { grad }=7 \\ \text { tangent } y-3=7(x-1) \end{gathered}$ 10 (ii) at $Q, 7 x-4=3 x^{3}-2 x^{2}+2 x$ leading to $3 x^{3}-2 x^{2}-5 x+4=0$ $\begin{aligned} & \quad(x-1)\left(3 x^{2}+x-4\right)-0 \\ & (x-1)(3 x+4)(x-1)=0 \\ & \text { leading to } x=-\frac{4}{3}, y=-\frac{40}{3} \end{aligned}$	M1 A1 M1 A1 [4] M1 B1,M1 M1 A1 [5]	M1 for differentiation and attempt to find gradient M1 for attempt to find tangent equation, allow unsimplified M1 for equating tangent and curve equations B1 for realising $(x-1)$ is a factor and attempt to factorise M1 for factorisation and attempt to solve quadratic A1 for both
$11 \text { (a) } \begin{aligned} \tan \theta+ & \cot \theta=\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta} \\ & =\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta \sin \theta} \\ & =\frac{1}{\cos \theta \sin \theta} \\ & =\operatorname{cosec} \theta \sec \theta \end{aligned}$ $\text { (b)(i) } \begin{aligned} & \tan x=3 \sin x \\ & \frac{\sin x}{\cos x}=3 \sin x \end{aligned}$ $\sin x-3 \sin x \cos x=0$ leading to $\cos x=\frac{1}{3}, \sin x=0$ $x=70.5^{\circ}, 289.5^{\circ} \text { and } x=180^{\circ}$ $\begin{aligned} & \text { (ii) } 2 \cot ^{2} y+3 \operatorname{cosec} y=0 \\ & 2\left(\operatorname{cosec}^{2} y-1\right)+3 \operatorname{cosec} y=0 \\ & 2 \operatorname{cosec}^{2} y+3 \operatorname{cosec} y-2=0 \\ & (2 \operatorname{cosec} y-1)(\operatorname{cosec} y+2)=0 \\ & \text { leading to } \sin y=-\frac{1}{2}, y=\frac{7 \pi}{6}, \frac{11 \pi}{6} \end{aligned}$	$\begin{array}{\|ll} \hline \text { M1 } & \\ \text { M1 } & \\ & \\ & \\ \text { A1 } & \\ \text { M1 } & \\ & \\ & \\ & \\ \text { A1 } \sqrt{ } \text { A1 } \\ \text { B1 } & \\ & \\ & {[4]} \\ \text { M1 } & \\ & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1,A1 } & \\ \hline \end{array}$	M1 for attempt to get in terms of sin and cos and attempt to get one fraction M1 for use of identity M1 for use of $\tan x=\frac{\sin x}{\cos x}$ and correct attempt to solve $\sqrt{ }$ A1 on their $x=70.5^{\circ}$ B1 for $x=180^{\circ}$ M1 for use of correct identity M1 for attempt to solve quadratic M1 for dealing with cosec

