MARK SCHEME for the October/November 2013 series

0606 ADDITIONAL MATHEMATICS

0606/11

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	11

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √^h implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

	Page 3						Paper
		IGCSE – October/Nove	E – October/November 2013				11
1	a = 3, b = 2,	<i>c</i> = 1	B1, B1, B1	[3]	B1 for	each	
2	Using $b^2 - 4ac$ $4k^2 + 8k -$	$9 = 4 (k + 1)^{2}$ - 5 = 0	M1 DM1			any use of $b^2 - 4ac$ or solution of their	
	$k=-\frac{5}{2},$	$\left(\frac{1}{2}\right)$	A1		A1 for	critical value(s), $\frac{1}{2}$	not necessary
	To be below th	the x-axis $k < -\frac{5}{2}$	A1 [[4]	A1 for	$k < -\frac{5}{2}$ only	
	To lie under th $\therefore (k+1)\frac{9}{4(k+1)}$	$x = \frac{3}{2(k+1)}$ $\frac{9}{(k+1)^2} - \frac{9}{2(k+1)} + (k+1)$ e x-axis, y < 0 $\frac{1}{1} - \frac{9}{2(k+1)} + (k+1) < 0$ $4(k+1)^2 \text{ or equivalent}$	М1		M1 for	a complete method	l to this point.

Page 4	Page 4 Mark Scheme			Syllabus	Paper	
	IGCSE – October/Nov	ember 201	13	0606	11	
[
3 $\frac{1+\sin\theta}{\cos\theta} + \frac{\cos\theta}{1+\sin\theta} + \frac{(1+\sin\theta)^2 + \cos^2\theta}{\cos\theta(1+\sin\theta)}$ $= \frac{1+2\sin\theta + \sin^2\theta + \cos^2\theta}{\cos\theta(1+\sin\theta)}$		M1	denom	M1 for dealing with the fractions, denominator must be correct, be go with numerator		
	$=\frac{2+2\sin\theta}{\cos\theta(1+\sin\theta)}$			M1 for expansion and use of $\cos^2 \theta + \sin^2 \theta = 1$		
$=\frac{2(1+)}{\cos\theta(1+)}$	$\frac{\sin \theta}{+\sin \theta}$	DM1	M1 fo	r attempt to factoris	se	
$=2 \sec \theta$		A1 [4		obtaining final ans	swer correctly	
$= \frac{(\sec \theta + t)}{\sec \theta}$ $= \frac{\sec^2 \theta + t}{\sec^2 \theta}$ $= \frac{2 \sec^2 \theta}{\sec^2 \theta}$ $= \frac{2 \sec^2 \theta}{\sec^2 \theta}$	$\theta + \frac{1}{\sec \theta + \tan \theta}$	M1 DM1 DM1	M1 fo tan ² 6	r dealing with the first recent the first recent time of the sec θ of the sec θ of the sec θ for attempt to factor	e of	
$=2 \sec \theta$		A1	A1 for	obtaining final ans	swer correctly	
4 (i) $n(A) = 3$		B1 [1	$\begin{array}{c} correc \\ n(A) \end{array}$	nents listed for (i), t t elements to get B = 3. If they are not l r given then B1.	l leading to	
(ii) n (<i>B</i>) = 4		B1 [1] correc B1. If	nents listed for (ii), t elements leading t they are not listed a then B1.	to $n(B) = 4$ to get	
(iii) $A \cup B = \{$	{60°, 240°, 300, 420°, 600°}	√B1 [1		v through on any se o not allow any rep		
(iv) $A \cap B = \{$	{60°, 420°}	√B1 [1		v through on any se	ts listed in (i) and	

Page 5	Page 5 Mark Scheme			Syllabus	Paper
	IGCSE – October/Nove	mber 2013		0606	11
5 (i) $9x - \frac{1}{3}\cos(\theta)$	s3x(+c)	B1, B1, B1 [3]	B1 for	Px, B1 for $\frac{1}{3}$ or co - $\frac{1}{3}$ cos3x	os3x
(ii) $\left[9x - \frac{1}{3}cc\right]$	9				
	$\cos 3\pi \left(-\frac{1}{3}\cos \frac{\pi}{3} \right)$	M1	M1 for to (i)	correct use of lim	its in their answer
$=8\pi + \frac{1}{2}$		A1, A1 [3]	A1 for	each term	
$6 \qquad \mathbf{f}\left(\frac{1}{2}\right) = \frac{a}{8} + 1 + \frac{a}{8} + 1 + \frac{a}{8} + 1 + \frac{a}{8} + \frac{a}{8}$	$-\frac{b}{2}-2$	M1	M1 for	substitution of <i>x</i> =	$=\frac{1}{2}$ into f(x)
leading to $a + c$	4b - 8 = 0	A1	A1 for	correct equation ir	any form
f(2) = 2f(-1)		M1		attempt to substitute nto $f(x)$ and use $f(x) + f(-1)$	
8a + 16 + 2b -	2 = 2(-a + 4 - b - 2)	A1		a correct equation	in any form
leading to $10a$ $\therefore a = -2, b =$	+4b+10 = 0 or equivalent = $\frac{5}{2}$	DM1 A1 [6]	attempt obtain e	on both previous M to solve simultan either <i>a</i> or <i>b</i> both correct	

Pa	Page 6 Mark Scheme		Syllabus	Paper			
		IGCSE – October/Nove	mber 2	013		0606	11
				<u> </u>			
7 (a)		50 20	B1 B1	[1]			
(b)		24	B1	[1] [1]			
	(ii) 28	3	B1	[1]			
		$24 - ({}^{8}C_{3} \times {}^{4}C_{3}) - ({}^{8}C_{2} \times {}^{4}C_{4})$ 24 - 3M 3W - 2M 4W)	M1			3 terms, at least 2 in terms of <i>C</i> nota	
	9 = 672	24 - 224 - 28	A1 A1			any pair (must be final answer	evaluated)
Or		${}^{8}C_{4} \times {}^{4}C_{2} = 420$	M1		M1 for 3 terms, at least 2 of which must be correct in terms of <i>C</i> notation or evaluated		
	5M 1W 6M	${}^{8}C_{5} \times {}^{4}C_{1} = 224$ ${}^{8}C_{6} = 28$	A1			any pair (must be	
		Total = 672	A1		A1 for	final answer	
8 (i)			B1]	B1 for	correct shape	
			B1]	B1 for	(-3, 0) or -3 seen	on graph
			B1]	B1 for	(2, 0) or 2 seen on	graph
			B1]	B1 for	(0, 6) or 6 seen on	graph or in a table
	,			[4]			
(ii)	$\left(-\frac{1}{2},\frac{2}{2}\right)$	$\left(\frac{5}{4}\right)$	B1, B1	[2]	B1 for	each	
(iii)	$k > \frac{25}{4}$	or $\frac{25}{4} < k \ (\le 14)$	B1	[1]			

	Page 7	Mark Schem		Syllabus	Paper	
		IGCSE – October/Nove	ember 2013		0606	11
9	(a) $12x^2 \ln($	$2x+1)+4x^3\left(\frac{2}{2x+1}\right)$	M1 A2, 1, 0 [3]		differentiation of a each error	correct product
	(b) (i) d	$\frac{1}{1}\frac{1}{1}\frac{1}{1} = \frac{(x+2)^{\frac{1}{2}}2 - 2x(x+2)^{-\frac{1}{2}}\frac{1}{2}}{x+2}$	M1, A1		differentiation of a ng $(x+2)^{\frac{1}{2}}$	quotient
		$=\frac{(x+2)^{\frac{1}{2}}}{(x+2)}(2(x+2)-x)$	DM1		correct unsimplified or attempt to simpli	
	=	$=\frac{x+4}{(x+2)^{\frac{3}{2}}}$	A1 [4]	A1 for correct simplification to obta given answer		
	Or : $\frac{\mathrm{d}y}{\mathrm{d}x} = 2x$	$\left(-\frac{1}{2}\right)(x+2)^{-\frac{3}{2}}+(x+2)^{-\frac{1}{2}}(2)$	M1, A1		differentiation of a ng $(x+2)^{-\frac{1}{2}}$	product
	=	$(x+2)^{-\frac{3}{2}}(2(x+2)-x)$ $(x+4)^{\frac{3}{2}}(x+2)^{\frac{3}{2}}$	DM1 A1	DM1 fo	correct unsimplified or attempt to simpli correct simplifications nswer	fy
	(ii) $\frac{10x}{\sqrt{x+2}}$	(+ <i>c</i>)	M1,A1 [2]	A1 corr	$\frac{1}{5} \times \frac{2x}{\sqrt{x+2}} \text{ or } 5 \times \frac{2x}{\sqrt{x+2}}$ or $5 \times \frac{2x}{\sqrt{x+2}}$ or $\frac{2x}{\sqrt{x+2}}$	
	(iii) $\left[\frac{10x}{\sqrt{x+2}}\right]$	$\left[-\frac{1}{2} \right]_{2}^{7} = \frac{70}{3} - \frac{20}{2}$	M1		correct application to (b)(ii)	of limits in their
		$=\frac{40}{3}$	A1 [2]			

Page 8	Mark Scheme	9		Syllabus	Paper
IGCSE – October/November 2013				0606	11
10 (i) $\sqrt{20}$ or 4.	47	B1 [1]			
(ii) Grad AB	$=\frac{1}{2}, \perp \text{grad} = -2$	M1	M1 for	attempt at a perp g	gradient
	$x^2 - 4 = -2(x - 1)$	M1, A1		attempt at straight e perpendicular and	. .
(y = -2x +	- 6)	[3]		ow unsimplified	
$(x-1)^2 +$	(iii) Coords of $C(x, y)$ and $BC^2 = 20$ $(x-1)^2 + (y-4)^2 = 20$ or Coords of $C(x, y)$ and $AC^2 = 40$		M1 for attempt to obtain relationship using an appropriate length and the point $(1, 4)$ or (-3, 2)		
$(x+3)^2 +$	$(y-2)^2 = 40$	A1	A1 for a correct equation		
Need inte	rsection with $y = -2x + 6$,	DM1	DM1 for attempt to solve with $y = -2x + 6$ and obtain a quadratic equation in terms of one variable only		
leads to 5 $5y^2 - 40y$	$x^2 - 10x - 15 = 0 \text{ or} -= 0$			5	
	giving $x = 3, -1$ and $y = 0, 8$		M1 for attempt to solve quadratic A1 for each 'pair'		
Or , using v	ector approach:				
$\overrightarrow{AB} = \begin{pmatrix} 4\\2 \end{pmatrix}$		B1	May be implied		
$\overrightarrow{OC} = \begin{pmatrix} 1\\4 \end{pmatrix} + \begin{pmatrix} -2\\4 \end{pmatrix} = \begin{pmatrix} -1\\8 \end{pmatrix}$		M1 A1, A1	M1 for correct approach A1 for each element correct		
$\overrightarrow{OC} = \begin{pmatrix} 1 \\ 4 \end{pmatrix} +$	$\begin{pmatrix} 2 \\ -4 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$	A1,A1	A1 for	each element corre	ect

Page 9	Mark Schem	e		Syllabus	Paper
	IGCSE – October/Nove		0606	11	
11 (a) (i) $\begin{pmatrix} 4\\4 \end{pmatrix}$	$\begin{pmatrix} 3\\3 \end{pmatrix}$	B1 [1]			
(ii) A ²	$e = \begin{pmatrix} 16 & 9 \\ 12 & 13 \end{pmatrix}$	B1, B1 [2]	B1 for an B1 for al	ny 2 correct elema l correct	ents
	s the inverse matrix of \mathbf{A}^2 $\frac{1}{00} \begin{pmatrix} 13 & -9 \\ -12 & 16 \end{pmatrix}$	√B1, √B1 [2]	Follow t	hrough on their A	2
(b) det $\mathbf{C} = x_0$ = 2:	$(x-1) - (-1)(x^2 - x + 1)$ $x^2 - 2x + 1$	M1 A1	A1 for th	ttempt to obtain on the second s	
<i>b</i> ² – 4 <i>ac</i> <	< 0, 4 – 8 < 0	DM1	solve usi		
No real so	blutions (so det $\mathbf{C} \neq 0$)	A1 [4]		orrect reasoning on real roots.	or statement that

	Page 10 Mark Scheme			Syllabus	Paper				
			IGCSE – O	ctober/November	2013	0606	11		
12	(a)	(i)	f(-10) = 299, f(8) = 191 Min point at (0, -1) or w ∴ range $-1 \le y \le 299$			M1 for substitution of either $x = -10$ or $x = 8$, may be seen on diagram B1 May be implied from final answer, may be seen on diagram Must have \leq for A1, do not allow x			
		(ii)	$x \ge 0$ or equivalent	B1	[3] [1]	 Must have \$\leq\$ for A1, do not allow x Allow any domain which will make f a one-one function Assume upper and lower bound when necessary. M1 for complete method to find the form inverse function, must involve ln or lg if appropriate. May still be in terms of y. A1 must be in terms of x 			
	(b)	(i)	$g^{-1}(x) = \ln\left(\frac{x+2}{4}\right)$ or $\frac{\lg\left(\frac{x+2}{4}\right)}{\lg e}$	M1 A1	[2]				
		(ii)	$gh(x) = g(1n5x) = 4e^{1n5x} - 2 20x - 2 = 18, x = 1$	M1 A1 A1	[3]	M1 for correct order A1 for correct expression A1 for correct solution fro working			
			Or $h(x) = g^{-1}(18)$ 1n5x = 1n5 leading to $x = 1$	M1 A1 A1		M1 for correct order A1 for correct equation A1 for correct solution fr working	om correct		