MARK SCHEME for the October/November 2012 series

0606 ADDITIONAL MATHEMATICS

0606/22

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0606	22

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0606	22

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

IGCSE – October/November 20120606221 $7x + 5 = 3x - 13$ $x = -4.5$ o.e. $7x + 5 = 3x + 13$ $x = 0.8$ o.e. OR Square and Equate $(5x - 4)(2x + 9)[= 0]$ $x = 0.8$ and $x = -4.5$ OR Plot $y = 7x + 5 $ Plot $y = 3x - 13 $ $x = -4.5$ M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M2 M1 M1 M1 M1 M2 M1 M1 M1 M2 M2 M2 M1 M1 M2 M2 M1 M1 M2 M2 M2 M2 M1 M2 M2 M2 M2 M2 M1 M2 M3 M2 M3 M2 M3 M4<	Paç	ge 4	Mark Scheme			Syllabus	Paper	
$x = -4.5$ o.e. $7x + 5 = 3x + 13$ $x = 0.8$ o.e. OR $Square and Equate10x^2 + 37x - 36(=0) o.e.(5x - 4)(2x + 9)[=0]x = 0.8 and x = -4.5ORPlot y = 7x + 5 Plot y = 3x - 13 x = -4.5A1A1A1A1A1A1A1A1A1A1A1Both expressions must have 3 termsThree termsA1A1A1A1B2EquateMark final answersM1A1A1B22\left(\frac{d4}{dr} = \right)4\pi r + 10\pi(\frac{d4}{dr} = \frac{d4}{dr} \times \frac{dr}{dt} with r = 66.8B1,B1M1A1$			IGCSE – October/Novembe		0606	22		
x = -4.5 o.e. $7x + 5 = 3x + 13$ $x = 0.8$ o.e. OR $ORA1M1M1A1M1A1<$								
$7x + 5 = 3x + 13$ $x = 0.8$ o.e. ORM1 [4] [4]Equate Mark final answers $0R$ $Square and Equate10x^2 + 37x - 36(= 0) o.e.(5x - 4)(2x + 9)[= 0]x = 0.8 and x = -4.5M1A1$			3		Equ	ate and attempt to s	solve	
$x = 0.8$ o.e. OR Square and Equate $10x^2 + 37x - 36(=0)$ o.e. $(5x - 4)(2x + 9)[= 0]$ $x = 0.8$ and $x = -4.5$ OR Plot $y = 7x + 5 $ Plot $y = 7x + 5 $ Plot $y = 3x - 13 $ $x = -4.5$ A1 A1 M1 A1 M1 A1Mark final answers Factorise or formula of three term quadratic.2 $\left(\frac{dA}{dr} = \right)4\pi r + 10\pi$ $Use \frac{dA}{dr} = \frac{dA}{dr} \times \frac{dr}{dr} with r = 66.8B1,B1M1A1A1Their \frac{dA}{dr}Rounds to 6.83Rearrange to ax^2 + bx + c [= 0](2x - 1)(2x - 7)[< 0]0.5 < x < 3.5M1A1A1A1Factorise or formulanot \leqslant mark final statement.4(i) 8(2^3) or 56-448(x^5)B1B1A1A1A1A1Mark final answer5(i) Evidence of 6, 5, 4, and 3 only360M1A1Numbers listed but not added.$					F			
OR Square and Equate $10x^2 + 37x - 36(= 0)$ o.e.[4] M1 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A3 A2 A2 A2 A3 A2 A3 A1			3					
Square and Equate $10x^2 + 37x - 36(=0)$ o.e.MI AI AIBoth expressions must have 3 terms Three terms Factorise or formula of three term quadratic. $x = 0.8$ and $x = -4.5$ OR Plot $y = 7x + 5 $ Plot $y = 3x - 13 $ $x = -4.5$ MI AI MI AIShape and intercepts must be correct Shape and intercepts must be correct2 $\left(\frac{dA}{dr}\right) = 4\pi r + 10\pi$ $x = -4.5$ B1,B1 MI AITheir $\frac{dA}{dr}$ Rounds to 6.83Rearrange to $ax^2 + bx + c [= 0]$ $(2x - 1)(2x - 7)[< 0]$ $0.5 < x < 3.5$ MI AI AI AIFactorise or formula not \leqslant mark final statement.4(i) $8 (2^3)$ or 56 $-448(x^5)$ B1 B1 AI AI AI AIMark final answer5(i) Evidence of 6, 5, 4, and 3 only 360 MI AI AINumbers listed but not added.).8 o.e.			Mar	k final answers		
$10x^2 + 37x - 36(= 0)$ o.e. $(5x - 4)(2x + 9)[= 0]$ $x = 0.8$ and $x = -4.5$ OR Plot $y = 7x + 5 $ Plot $y = 7x + 5 $ Plot $y = 3x - 13 $ $x = -4.5$ A1 A1 M1 A1 A1Three terms Factorise or formula of three term quadratic.2 $\left(\frac{dA}{dr}\right) = 4\pi r + 10\pi$ $Use \frac{dA}{dr} = \frac{dA}{dr} \times \frac{dr}{dr} with r = 66.8B1,B1M1A1A1Their \frac{dA}{dr}Rounds to 6.83Rearrange to ax^2 + bx + c [= 0](2x - 1)(2x - 7)[< 0]0.5 < ax < 3.5M1A1A1Factorise or formulaA1A14(i) 8 (2^3) or 56-448(x^5)B1B1B1A11792(x^5)M1A1A15(i) Evidence of 6, 5, 4, and 3 only360M1A1Numbers listed but not added.$		ma and Ea	noto		Datl		have 2 tamps	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							nave 3 terms	
$x = 0.8$ and $x = -4.5$ ORA1quadratic. OR Plot $y = 7x + 5 $ Plot $y = 3x - 13 $ $x = 0.8$ $x = -4.5$ A1 M1 A1Shape and intercepts must be correct Shape and intercepts must be correct2 $\left(\frac{dA}{dr}\right) = 4\pi r + 10\pi$ Use $\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$ with $r = 6$ 6.8 B1,B1 M2 M2 M2 M2 M1 M1 M2 M1 M2 M2 M2 M2 M1 M2 M2 M2 M2 M1 M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M1 M2 M3 M3 M3 M3 M4							three torm	
OR Plot $y = 7x + 5 $ Plot $y = 3x - 13 $ $x = 0.8$ $x = -4.5$ M1 M1 A1 A1Shape and intercepts must be correct Shape and intercepts must be correct Shape and intercepts must be correct2 $\left(\frac{dA}{dr} = \right) 4\pi r + 10\pi$ Use $\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$ with $r = 6$ 6.8 B1,B1 M1 M1 [4]Their $\frac{dA}{dr}$ 3Rearrange to $ax^2 + bx + c$ [= 0] $(2x - 1)(2x - 7)[< 0]$ $0.5 and 3.5$ $0.5 < x < 3.5$ M1 A1 [4]Factorise or formula not \leq mark final statement.4(i) $8(2^3)$ or 56 $-448(x^5)$ B1 B1 B1 2 × their 1120 and their -448 used $1792(x^5)$ B1 B1 B1 B1 [3]5(i) Evidence of 6, 5, 4, and 3 only 360 M1 A1Numbers listed but not added.								
Plot $y = 7x + 5 $ Plot $y = 3x - 13 $ $x = 0.8$ $x = -4.5$ M1 M1 A1 A1Shape and intercepts must be correct Shape and intercepts must be correct Shape and intercepts must be correct2 $\left(\frac{dA}{dr} = \right) 4\pi r + 10\pi$ Use $\frac{dA}{dr} = \frac{dA}{dr} \times \frac{dr}{dt}$ with $r = 6$ 6.8 B1,B1 M1 M1 [4]Their $\frac{dA}{dr}$ 3Rearrange to $ax^2 + bx + c$ [= 0] $(2x - 1)(2x - 7)[< 0]$ 0.5 and 3.5 $0.5 < x < 3.5$ M1 A1 [4]Factorise or formula not \leqslant mark final statement.4(i) $8(2^3)$ or 56 $-448(x^5)$ $(ii) 1120(x^4)$ $2 \times$ their 1120 and their -448 used $1792(x^5)$ B1 B1 A1 [3]Mark final answer5(i) Evidence of 6, 5, 4, and 3 only 360 M1 A1Numbers listed but not added.			T.9	711	quat	nune.		
Plot $y = 3x - 13 $ $x = 0.8$ $x = -4.5$ M1 A1 A1Shape and intercepts must be correct2 $\left(\frac{dA}{dr}\right) = 4\pi r + 10\pi$ Use $\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$ with $r = 6$ 6.8B1,B1 M1 M1 [4]Their $\frac{dA}{dr}$ Rounds to 6.83Rearrange to $ax^2 + bx + c$ [= 0] $(2x - 1)(2x - 7)[< 0]$ 0.5 and 3.5 $0.5 < x < 3.5$ M1 M1 A1 A1 [4]Factorise or formula not \leqslant mark final statement.4(i) $8(2^3)$ or 56 $-448(x^5)$ (ii) $1120(x^4)$ $2 \times$ their 1120 and their -448 used $1792(x^5)$ B1 M1 A1 A1 [3]5(i) Evidence of 6, 5, 4, and 3 only 360 M1 A1Numbers listed but not added.		v = 7r +	5	M1	Shar	be and intercepts m	ust be correct	
x = 0.8 x = -4.5A1 A12 $\left(\frac{d4}{dr} = \right) 4\pi r + 10\pi$ Use $\frac{d4}{dt} = \frac{d4}{dr} \times \frac{dr}{dt}$ with $r = 6$ 6.8B1,B1 M1 M1 A1								
$x = -4.5$ A12 $\left(\frac{dA}{dr}\right) = 4\pi r + 10\pi$ Use $\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$ with $r = 6$ 6.8B1,B1 M1 M1 [4]Their $\frac{dA}{dr}$ Rounds to 6.83Rearrange to $ax^2 + bx + c$ [= 0] $(2x - 1)(2x - 7)[< 0]$ $0.5 and 3.5$ M1 A1 A1 A1 A1 A1 [4]Factorise or formula not \leq mark final statement.4(i) $8 (2^3)$ or 56 $-448(x^3)$ B1 B1 B1 [2] B1 [3]Mark final answer5(i) Evidence of 6, 5, 4, and 3 only 360 M1 A1Numbers listed but not added.			1.5		~1			
2 $\left(\frac{dA}{dr}=\right)4\pi r+10\pi$ Use $\frac{dA}{dt}=\frac{dA}{dr}\times\frac{dr}{dt}$ with $r=6$ 6.8B1,B1 M1Their $\frac{dA}{dr}$ Rounds to 6.83Rearrange to $ax^2 + bx + c$ [= 0] $(2x-1)(2x-7)[< 0]$ $0.5 and 3.5$ M1 A1 B				A1				
$ \begin{array}{c c} 2 & \left[\frac{1}{dr}\right]^{4}\pi r + 10\pi \\ \text{Use } \frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt} \text{ with } r = 6 \\ 6.8 & & & & & & \\ 6.8 & & & & & \\ \end{array} $ $ \begin{array}{c c} 3 & \text{Rearrange to } ax^{2} + bx + c = 0] \\ (2x - 1)(2x - 7)[<0] & & & \\ 0.5 \text{ and } 3.5 & & & \\ 0.5 < x < 3.5 & & & \\ \end{array} $ $ \begin{array}{c c} 4 & (\mathbf{i}) & 8(2^{3}) \text{ or } 56 \\ -448(x^{5}) & & & \\ 1792(x^{5}) & & & \\ \end{array} $ $ \begin{array}{c c} 3 & \text{Rearrange to } ax^{2} + bx + c = 0] \\ \text{M1} & \text{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6.8 \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & \text{Rounds to } 6. \\ \end{array} $ $ \begin{array}{c c} \mathbf{M1} & Roun$		1.0						
$\begin{array}{c} \text{Min} & \text{Inerr} \frac{1}{dr} \\ \text{Use} \frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt} \text{ with } r = 6 \\ 6.8 \\ \end{array} \qquad \qquad$	• (dA			B1,B1				
$\begin{array}{c c} & A & A & A & A & A & A & A & A & A & $	$\frac{2}{\mathrm{d}r}$	$= 4\pi r + 1$	0π	M1		dA		
Use $\frac{1}{dt} = \frac{1}{dr} \times \frac{1}{dt}$ with $r = 6$ 6.8 A 1 [4] Rounds to 6.8 [4] 3 Rearrange to $ax^2 + bx + c = 0$] (2x - 1)(2x - 7)[< 0] 0.5 and 3.5 0.5 < x < 3.5 (i) $8 (2^3) \text{ or } 56$ $-448(x^5)$ (ii) $1120(x^4)$ $2 \times \text{their } 1120 \text{ and their } -448 \text{ used}$ $1792(x^5)$ 5 (i) Evidence of 6, 5, 4, and 3 only 360 M1 M1 Rounds to 6.8 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1		/		1011	The	$r \frac{dr}{dr}$		
6.8A1 [4]Rounds to 6.83Rearrange to $ax^2 + bx + c$ [= 0] $(2x - 1)(2x - 7)[< 0]$ 0.5 and 3.5 $0.5 < x < 3.5$ M1 M1 A1 A1 A1 ant $\leq mark$ final statement.4(i) $8 (2^3)$ or 56 $-448(x^5)$ B1 B1 B1 M1 B1 M1 B1 M1 B1 M1 B1 M1 B1 M1 B1 M1 B1 M1 A1 B1 M1 A1 A1 A1 A1 B1 M1 A1	Use	$\frac{u_{1}}{d_{4}} = \frac{u_{1}}{d_{1}} \times$	$\frac{dr}{dt}$ with $r = 6$			en en		
Image: 0.3[4]3Rearrange to $ax^2 + bx + c [= 0]$ $(2x - 1)(2x - 7)[< 0]$ $0.5 and 3.5$ $0.5 < x < 3.5$ M1 M1 A1 A1 $10.5 < x < 3.5$ Factorise or formula not \leq mark final statement.4(i) $8 (2^3) \text{ or } 56$ $-448(x^5)$ B1 B1 B1 2 × their 1120 and their -448 usedM1 A1 [2] B1 [3]5(i) Evidence of 6, 5, 4, and 3 only 360 M1 A1Numbers listed but not added.		d <i>t</i> d <i>r</i>	dI	A1	Rou	nds to 6.8		
3Rearrange to $ax^2 + bx + c [= 0]$ M1 M1 M1 A1 A1 A1 A1 A1Factorise or formula not \leq mark final statement.4(i) $8 (2^3) \text{ or } 56$ $-448(x^5)$ B1 B1 B1 M1 (ii) $1120(x^4)$ $2 \times \text{their } 1120 \text{ and their } -448 \text{ used}$ B1 M1 A1 [2] B1 M1 A1 [3]5(i) Evidence of 6, 5, 4, and 3 only 360 M1 M1 A1Numbers listed but not added.	0.0							
(2x - 1)(2x - 7)[< 0] $(0.5 and 3.5)$ $(1.5 < x < 3.5)$ $M1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ A								
0.5 and 3.5 0.5 < x < 3.5A1 A1 A1 [4]not < mark final statement.4(i) $8 (2^3) \text{ or } 56$ $-448(x^5)$ B1 B1 B1 Mark final answer(ii) $1120(x^4)$ $2 \times \text{their } 1120 \text{ and their } -448 \text{ used}$ B1 M1 A1 [3]5(i) Evidence of 6, 5, 4, and 3 only 360 M1 A1 A1								
$0.5 < x < 3.5$ A1 [4]not < mark final statement.)[<0]		Fact	orise or formula		
$ \begin{array}{ c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $								
4 (i) $8 (2^3) \text{ or } 56$ $-448(x^5)$ B1 B1 B1 (2) Mark final answer (ii) $1120(x^4)$ $2 \times \text{their } 1120 \text{ and their } -448 \text{ used}$ M1 A1 [3] Mark final answer 5 (i) Evidence of 6, 5, 4, and 3 only 360 M1 A1 Numbers listed but not added.	0.5 <	< x < 3.5			not	\leq mark final state	ment.	
(ii) $1120(x^4)$ $2 \times \text{their } 1120 \text{ and their } -448 \text{ used}$ $1792(x^5)$ (i) Evidence of 6, 5, 4, and 3 only 360 (ii) Evidence of 6, 5, 4, and 3 only 360 (iii) Evidence of 6, 5, 4, and 3 only 360 (iv) M1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A				[4]				
(ii) $1120(x^4)$ $2 \times \text{their } 1120 \text{ and their } -448 \text{ used}$ $1792(x^5)$ 5 (i) Evidence of 6, 5, 4, and 3 only 360 M1 Numbers listed but not added. A1	4 (i)	$8(2^3)$ or 5	6	B1				
(ii) $1120(x^4)$ $2 \times \text{their } 1120 \text{ and their } -448 \text{ used}$ $1792(x^5)$ 5 (i) Evidence of 6, 5, 4, and 3 only 360 M1 Numbers listed but not added. A1		$-448(x^5)$			Mar	k final answer		
(ii) $1120(x^4)$ B1 $2 \times$ their 1120 and their -448 used M1 $1792(x^5)$ A1 [3] 5 (i) Evidence of 6, 5, 4, and 3 only M1 360 M1				[2]				
$\begin{array}{c c} 1792(x^5) & A1 \\ \hline [3] \\ \hline 5 (\mathbf{i}) \text{Evidence of } 6, 5, 4, \text{ and } 3 \text{ only} \\ 360 & A1 \end{array} \text{Numbers listed but not added.}$	(ii)	$1120(x^4)$						
[3] [3] 5 (i) Evidence of 6, 5, 4, and 3 only 360 M1 A1 Numbers listed but not added.		$2 \times \text{their } 1$	120 and their –448 used					
5 (i) Evidence of 6, 5, 4, and 3 only M1 A1 Numbers listed but not added.		$1792(x^5)$		A1				
360 A1				[3]				
360 A1	5 (i)	Evidence	of 6, 5, 4, and 3 only	M1	Nun	bers listed but not	added.	
[[2]			· · · · ·					
				[2]				
(ii) Evidence of 2×3 for outside digits B1	(ii)	Evidence	of 2×3 for outside digits					
Evidence of 4×3 for inside digits B1 ${}^{4}P_{2}$ used correctly.				B1	${}^{4}P_{2}\iota$	used correctly.		
72 B1			č					
[3]				[3]				
6 (i) Express as powers of 2 M1 At least one : 2^{6y-9} or 2^{4x-4y} o.e.	6 (1)	Everage	s nowers of 2	N/1		6 ¹ / ₂ -0	4x-4y	
6 (i) Express as powers of 2 Correctly reaches $3x + 2y = 6$ M1 At least one : 2^{6y-9} or 2^{4x-4y} o.e.					At le	east one : 2^{y-y} or 2^{y-y}	2 o.e.	
$\begin{bmatrix} 2 \end{bmatrix}$		Concerny	$\frac{1}{2} \cos (3x + 2y) = 0$					
(ii) Express as powers of 5 $M_1^{\lfloor 2 \rfloor}$ Both correct 5^2 and 5^{3x-6} o.e.	(ii)	Express a	s powers of 5		Both	correct 5^2 and 5^{3x}	⁻⁶ o e	
$y = 3x - 4 \text{o.e.} \qquad \qquad \text{A1} \text{Three terms}$								
Attempt to solve simultaneous equations M1 Equations must be linear							ar	
		14	2		-			~£
x = - and $y = -$		$x = \frac{1}{\alpha}$ and	$1y = \frac{1}{3}$		Acc	ept decimals that ro	ound to correct 3s	31
9 3 [4]		7	5	[4]				

I	Pag	е 5	Mark Scheme		Syllabus Pape 2 0606 22			
			IGCSE – October/Novembe	er 2012		22		
		2						
7 (i	·	$\sec^2 4x$		M1	One	term only		
	>	× 4		A1 [2]				
(i	ii) х	к +		B1				
,	,	an4x		M1	No additional terms			
	÷	÷4		A1	isw			
(iii	i) (Correct us	se of limits	[3] M1	Expression must have 2 integrated terms			
(., .					from (ii) .	C	
		$k = \frac{1}{8}$		A1	Rou	nds to 0.125. Acce	ept $\frac{\pi}{-}$ or 0.125π	
		8		[2]			8	
		7 /		B1	Find	ling gradient		
8 (i	i)	$(b=)\frac{7-4}{8-2}$	$\dot{f} = \left \frac{1}{2} \right $	M1		ling gradient ling y intercept		
		(lg a) = 3	· [4]	M1		$= c + m \lg x$ is suffic	ient	
			blgx or lgy - 4 = b(lgx - 2)	1 VI 1	igy -	$-c + mig_x$ is suffic	lent	
		or $\lg y = 3$						
		1000	1.03					
		a = 1000 or	or 10° or $1000\sqrt{x}$	A1 A1				
	J	v = 1000x	of $1000\sqrt{x}$	[5]				
(i	ii) <i>r</i>	m = 1		B1				
				[1]				
(iii	i) (c = 6		B1				
				[1]				
9 (i)			80	B1	Corr	rect triangle		
			40					
		420	OR					
		α	420					
			<u>40</u> 80					
		$\sin \alpha$ s	sin 40	M1	Use	of sine or cosine ru	ale in any triangle	
		80 =-	420				heir v and an angle.	
		$\alpha = 7.03$	or 7	A1 A1√				
			223 $(230 - \alpha)$	[4]				
				L J				
(ii))	$\frac{v}{\sin t h \sin t}$	$\frac{122}{122} = \frac{420}{\sin 40}$	M1	Use of sine or cosine rule in any triangle			
		sin their	133 sin 40		with	80 or 420 or both.		
		v = 478		A1				
		Use time	, 1000	M1	v ca	lculated from a tria	ngle	
			V					
		2.09 hou	rs or 2 hours 5minutes	A1 [4]	Units required			
				[7]				

Page 6		Mark Scheme	Syllabu	IS	Paper	
		IGCSE – October/November 2012		0606		22
10 (i)		e to find v	M1	Increase of powe	rs seen	at least once
	v = 4t - t		A1			
	Use $t = 0$ v = 4t - 1	v = 12 to find $c = 12$	B1			
	v = 4t - t $t = 6$	t + 12	M1 A1	Solve three term Do not penalize <i>t</i>		10
	l = 0		[5]		- <i>-</i> 2.	
(ii)	Integrate	e to find <i>s</i>	M1	Increase of powe	rs on at	least 2 terms
	-		A1√	3 terms		
	$s = 2t^2 - $	$\frac{1}{3} + 12t$	Al			
	s = 72	5	[3]	cao		
	~		[-]			
11 (a)	$\tan x = -$	2.25	B1			
	114		B1	Rounds to 114.0		
	294		B1√^	Their $114 + 180$	from tai	n function isw
A .)		1	[3]	_		
(b)	Uses co	$\sec y = \frac{1}{\sin y}$	B1	Seen anywhere		
		uadratic in $\sin y : 12\sin^2 y + \sin y - 1$	M1	Must be 3 terms		
	[=0]	1)(2-1) + 1)[-0]	N (1		1 6 7	1.
	$(4\sin y - 14.5 \text{ and})$	$1)(2\sin y + 1)[= 0]$	M1 A1	Factorise or form Any 2 values isw		e term quadratic.
	165.5 an		A1 A1	The other 2 value		
	100.0 un		[5]	The other 2 value	0 10 10	
(c)	$\cos\left(\frac{z}{3}\right)$	$=\frac{3}{5}$	B1			
	$\frac{z}{3} = 0.92$		M1	Solves their equa	tion in	radians
	5	to 2.79 inc	A1	isw		
	z = 2.78	0 2.75 me	A1 A1	Rounds to isw		
			[4]			
10 EITI						
12 EITH				Integrate : $e^{-\frac{x}{4}}$ so		
(f)	$y A e^{-\frac{1}{4}x}$	+c	M1	Integrate : e ⁴ se	een	
(1)	$y A e^{-4}$	т <i>с</i> ј	A1 DM1			
	A = -4 Substitute	(0, 10)	DM1			
	y=14-4	e ⁴ .	A1			
	14 - 4e		A1			
			[5]			
(ii)	Tangent a	$t A ext{ is } y - 10 = x$	B1			
		tangent at B is e	B1			
	-	t B is $y+4e-14=ex+4e$	B1√^	With their gradie		inswer to (i)
	-	ations of tangents	M1	Two linear equat	ions	
	$x = \frac{4}{1-e}$).e.	A1			
	1-e		[5]			
			[3]			

Pa	ge 7	Mark Scheme		Syllabus	Paper
	IGCSE – October/November 2012			0606	22
12 OR				r	
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{3}$		M1	$Ae^{-\frac{x}{3}}$ only one term	
	at (0, 9)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{3}$	A1		
	Grad not	rmal = 3	M1	Use of $m_1 m_2 = -1$	
	Point Q	is (-3, 0)	A1	Condone $x = -3$	
			[4]		
(ii)	Area rec	tangle 24 + 3e (32.1)	M1	Their $3 \times \text{their}(8+e)$	
	$\int_{-3}^{0} 8 + e^{-3}$	$-\frac{x}{3}$ dx	M1	Integrate: $8x$ and $e^{-\frac{x}{3}}$ so	een
	$=\left[8x-3\right]$	$e^{-\frac{x}{3}} \bigg]_{-3}^{0}$	A1		
	21+3e (2	29.1)	M1	Correct use of limits th	heir -3 and 0
	Shaded a		A1		
			A1		
			[6]		