MARK SCHEME for the October/November 2008 question paper

0606 ADDITIONAL MATHEMATICS

0606/02

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2008	0606	02

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2008	0606	02

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW -1,2 This is deducted from A or B marks when essential working is omitted.
- PA -1 This is deducted from A or B marks in the case of premature approximation.
- S -1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX -1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

	Page	e 4	Mark Scheme	Syllabus	Paper
			IGCSE – October/November 2008	0606	02
1		$\mathbf{A}^{-1} =$	$=\frac{1}{10}\begin{pmatrix} 4 & -6\\ -7 & 13 \end{pmatrix}$ B1	+B1	
		evalua	ate $\mathbf{A}^{-1} \begin{pmatrix} 41\\ 24 \end{pmatrix}$ M	1	
			y = 2.5 A1	l	[4]
					[*]
2		k(2x		1	
		6(2x)	$(-9)^2$ A1	l	
		substi	tute $x = 7$ and $\frac{dx}{dt} = 4$ into $\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$ M	1	
		600	A1	l	
					[4]
3		elimir	•		
			$^{2}-4ac$ or $b^{2}*4ac$ DN $10m-39*0$ or $(5+m)^{2}*64$ A1		
			$10m-39*0$ or $(5+m)^2*64$ A1 ise 3 term quadratic in <i>m</i> or take square root M		
			m < 3 Al		
					[5]
4	(i)	$\frac{d}{d}$ (lm	$\mathbf{h}(x) = \frac{1}{x} $ B1		
		dx 1 + ln.			
	(ii)	$\int (1+)$	$\ln x)dx = x\ln x(+c)$ M	1	
		$\int \ln x$	$dx = x \ln x - \int 1 dx(+c) $ M	1	
		$x \ln x$	-x(+c) A1	l	
					[5]
5	(i)		ss as powers of 2 (or 4 or 8) M	1	
			es rules of indices $[2x-(5-x)=4x-3(x-3)]$ DN		
		7	Al		
	(ii)		$y + 10$ + lg $y = lg \{y(2y + 10)\}$ or $2 = lg 100$ B1		
		$2y^2$ + 5 only	10y = 100 oe B1		
		Johny			[6]

	Page 5		Mark Scheme	Syllabus	Paper
			IGCSE – October/November 2008	0606	02
6	(a)		and 15 B1 bly 3 values M1 A1		
	(b)	4×(5) 240	×4×3) B1 B1	+B1	[6]
7	(i)	speed 1.4	of travel = 4.8 or distance downstream = 14 B1 OR (4.8) (4.8) 1.4		
	(ii)	$\sqrt{1.4^2}$ 5 \tan^{-1}	right angle triangle with 1.4 and (4.8) at 90°B1 $+(4.8)^2$ M1 (4.8) A1 (4.8) N1 1.4 Oer 1.29 radiansA1	l	[6]
8	(i) (ii)	5 180 or	B1 π B1		
	(iii)	8 and	-2 B1	+B1	
	correc 2 cyc	ct start a les in 0 1	nd endpoints B1		[7]

IGCSE - October/November 20080606029eliminate y (or x)M1 $7x^2 - 42x + 35 = 0$ (or $7y^2 + 42y - 49 = 0$) oeA1solve 3 term quadraticM1 $x = 1$ and 5 (or $y - 7$ and 1)A1find mid-pointM1use $m_{a,a}, m_{m,a} = -1$ and coordinates of a pointM1 $y + 3 = -\frac{1}{2}(x - 3)$ or $x + 2y + 3 = 0$ or $y = -\frac{1}{2}x - \frac{3}{2}$ A110(i) $\frac{dy}{dx} = 3x^2 - 16x + 16$ B1equate to 0 and solve 3 term quadraticM1 $x = 4, y = 0$ A1 AG $x = \frac{4}{3}y = 9\frac{13}{27}$ or $\frac{256}{27}$ or 9.48 or 9.5A1(ii)integrateM1 $\frac{x^4}{4} - \frac{8x^3}{3} + 8x^2$ A1use limits of 4 (and 0)DM1 $21\frac{1}{3}$ or 21.3A1(ii)attempt at gradient using plotted pointsDM1 5 ± 0.2 A1intercept 2±0.1B1(or A1 if calculated from $y = mx + c$)B1use $Y = mX + c$ in correct wayM1 $y = \frac{5}{x^2} + \frac{2}{x}$ or $y = \frac{5+2x}{x^2}$ or $y = \frac{1}{x}(\frac{5}{x} + 2)$ A1 $\sqrt{1}$		Page 6	Mark Scheme	Syllabus	Paper
$7x^{2}-42x+35=0 \text{ (or } 7y^{2}+42y-49=0 \text{)oe} \qquad A1$ solve 3 term quadratic MI $x = 1 \text{ and 5 (or } y=-7 \text{ and 1}) \qquad A1$ find second coordinates MI find mid-point MI $y+3 = -\frac{1}{2}(x-3) \text{ or } x+2y+3 = 0 \text{ or } y = -\frac{1}{2}x-\frac{3}{2} \qquad A1$ $y+3 = -\frac{1}{2}(x-3) \text{ or } x+2y+3 = 0 \text{ or } y = -\frac{1}{2}x-\frac{3}{2} \qquad A1$ [8] 10 (i) $\frac{dy}{dx} = 3x^{2}-16x+16$ equate to 0 and solve 3 term quadratic MI $x = 4, y = 0 \qquad A1 \text{ AG}$ $x = \frac{4}{3}y = 9\frac{13}{27} \text{ or } \frac{256}{27} \text{ or } 9.48 \text{ or } 9.5 \qquad A1$ (ii) integrate MI $\frac{x^{4}}{4} - \frac{8x^{3}}{3} + 8x^{2} \qquad A1$ use limits of 4 (and 0) DM1 $21\frac{1}{3} \text{ or } 21.3 \qquad A1$ [8] 11 (i) plot xy against 1/x with linear scales M1 $\frac{xy}{1} + \frac{5}{3.24} = 2.82 = 2.64$ $1/x = 0.5 = 0.25 \qquad 0.17 \qquad 0.125 \qquad A2, 1, 0$ (ii) attempt at gradient using plotted points DM1 $\frac{5\pm0.2}{1} \qquad A1$ (iii) read from graph or substitute in formula to find x $x = 2.5 \pm 0.2$ (iii) read from graph or substitute in formula to find x $x = 2.5 \pm 0.2$ (iii) read from graph or substitute in formula to find x $x = 2.5 \pm 0.2$ (iii) read from graph or substitute in formula to find x $x = 2.5 \pm 0.2$ (iii) read from graph or substitute in formula to find x $x = 4.2$			IGCSE – October/November 2008		
$7x^{2} - 42x + 35 = 0 \text{ (or } 7y^{2} + 42y - 49 = 0 \text{)oe}$ solve 3 term quadratic $x = 1 \text{ and 5 (or } y = -7 \text{ and 1})$ find second coordinates $M1$ find mid-point $y + 3 = -\frac{1}{2}(x - 3) \text{ or } x + 2y + 3 = 0 \text{ or } y = -\frac{1}{2}x - \frac{3}{2}$ A1 $y + 3 = -\frac{1}{2}(x - 3) \text{ or } x + 2y + 3 = 0 \text{ or } y = -\frac{1}{2}x - \frac{3}{2}$ A1 $y + 3 = -\frac{1}{2}(x - 3) \text{ or } x + 2y + 3 = 0 \text{ or } y = -\frac{1}{2}x - \frac{3}{2}$ A1 $y + 3 = -\frac{1}{2}(x - 3) \text{ or } x + 2y + 3 = 0 \text{ or } y = -\frac{1}{2}x - \frac{3}{2}$ A1 $y + 3 = -\frac{1}{2}(x - 3) \text{ or } x + 2y + 3 = 0 \text{ or } y = -\frac{1}{2}x - \frac{3}{2}$ A1 $x = 4, y = 0$ $x = 4, y = 0$ A1 AG $x = \frac{4}{3}y = 9\frac{13}{27} \text{ or } \frac{256}{27} \text{ or } 9.48 \text{ or } 9.5$ A1 (i) integrate $\frac{x^{4}}{4} - \frac{8x^{3}}{3} + 8x^{2}$ A1 use limits of 4 (and 0) DM1 $21\frac{1}{3} \text{ or } 21.3$ A1 (ii) attempt at gradient using plotted points $M1$ $\frac{5\pm0.2}{1/x} \text{ or } y = \frac{5+2x}{x^{2}} \text{ or } y = \frac{1}{x}\left(\frac{5}{x}+2\right)$ A1 $\sqrt{$ (iii) read from graph or substitute in formula to find x $y = \frac{5}{x} + \frac{2}{x} \text{ or } y = \frac{5+2x}{x^{2}} \text{ or } y = \frac{1}{x}\left(\frac{5}{x}+2\right)$ A1 (iii) read from graph or substitute in formula to find x $y = 1.6 \pm 0.1$ A1 A1 (A) A1 (A) A (A) (A) (A) (A) (A) (A) (A) (A) (0	-1ii		1	
solve 3 term quadratic MI x = 1 and 5 (or $y = -7$ and 1) AI find second coordinates MI find mid-point MI use m_{ab} , $m_{ab} = -1$ and coordinates of a point MI $y + 3 = -\frac{1}{2}(x-3)$ or $x + 2y + 3 = 0$ or $y = -\frac{1}{2}x - \frac{3}{2}$ AI 10 (i) $\frac{dy}{dx} = 3x^2 - 16x + 16$ BI equate to 0 and solve 3 term quadratic MI x = 4, y = 0 AI AG $x = \frac{4}{3}y = 9\frac{13}{27}$ or $\frac{256}{27}$ or 9.48 or 9.5 AI (ii) integrate MI $\frac{x^4}{4} - \frac{8x^3}{3} + 8x^2$ A1 use limits of 4 (and 0) DMI $21\frac{1}{3}$ or 21.3 AI (iii) attempt at gradient using plotted points DMI $\frac{5 \pm 0.2}{1/x}$ A1 (iii) readfrom y = mx + c) use Y = mX + c in correct way MI $y = \frac{5}{x^2} + \frac{2}{x}$ or $y = \frac{5+2x}{x^2}$ or $y = \frac{1}{x}(\frac{5}{x} + 2)$ A1 $$ (iii) read from graph or substitute in formula to find x MI $x = 2.5 \pm 0.2$ A1 (iii) read from graph or substitute in formula to find x MI $x = 2.5 \pm 0.2$ A1 (iii) read from graph or substitute in formula to find x MI $x = 2.5 \pm 0.2$ A1 (iii) read from graph or substitute in formula to find x MI $x = 2.5 \pm 0.2$ A1 (iii) read from graph or substitute in formula to find x MI $x = 2.5 \pm 0.2$ A1 (iii) read from graph or substitute in formula to find x MI $x = 2.5 \pm 0.2$ A1 (iii) read from graph or substitute in formula to find x MI $y = 1.6 \pm 0.1$ A1	9		•		
$x = 1 \text{ and } 5 \text{ (or } y = -7 \text{ and } 1)$ find second coordinates M1 find mid-point M1 use m_{AB} , $m_{i}m_{2} = -1$ and coordinates of a point M1 $y + 3 = -\frac{1}{2}(x-3) \text{ or } x + 2y + 3 = 0 \text{ or } y = -\frac{1}{2}x - \frac{3}{2}$ A1 [8] 10 (i) $\frac{dy}{dx} = 3x^{2} - 16x + 16$ equate to 0 and solve 3 term quadratic $x = 4, y = 0$ A1 AG $x = \frac{4}{3}, y = 9\frac{13}{27} \text{ or } \frac{256}{27} \text{ or } 9.48 \text{ or } 9.5$ A1 (ii) integrate $\frac{x^{4}}{4} - \frac{8x^{3}}{3} + 8x^{2}$ Use limits of 4 (and 0) $\frac{11}{21\frac{1}{3}} \text{ or } 21.3$ A1 [8] 11 (i) plot xy against 1/x with linear scales $xy = 4.5 - 3.24 - 2.82 - 2.64$ $1/x = 0.5 - 0.25 - 0.17$ (iii) attempt at gradient using plotted points $\frac{5}{2} + 0.1$ $\frac{5}{x^{2}} + \frac{2}{x}$ or $y = \frac{1}{x}(\frac{5}{x} + 2)$ A1 (ii) read from graph or substitute in formula to find x $x = 2.5 \pm 0.2$ (iii) read from graph or substitute in formula to find x $x = 1.6 \pm 0.1$ A1 (iii) read from graph or substitute in formula to find x $x = 2.5 \pm 0.2$ (iii) read from the first of					
find second coordinates M1 find mid-point M1 use m_{AB} , $m_{AB} = -1$ and coordinates of a point M1 $y+3 = -\frac{1}{2}(x-3)$ or $x+2y+3 = 0$ or $y = -\frac{1}{2}x-\frac{3}{2}$ A1 [8] 10 (i) $\frac{dy}{dx} = 3x^2 - 16x + 16$ B1 equate to 0 and solve 3 term quadratic M1 x = 4, y = 0 A1 AG $x = \frac{4}{3}, y = 9\frac{13}{27}$ or $\frac{256}{27}$ or 9.48 or 9.5 A1 (ii) integrate M1 $\frac{x^4}{4} - \frac{8x^3}{3} + 8x^2$ A1 use limits of 4 (and 0) DM1 $21\frac{1}{3}$ or 21.3 A1 [8] 11 (i) plot xy against $1/x$ with linear scales M1 xy = 4.5 - 3.24 - 2.82 - 2.64 1/x = 0.5 - 0.25 - 0.17 - 0.125 A2, 1, 0 (ii) attempt at gradient using plotted points DM1 5 ± 0.2 A1 intercept 2 ± 0.1 B1 (or A1 if calculated from $y = mx + c$) use $Y = mX + c$ in correct way M1 $y = \frac{5}{x^2} + \frac{2}{x}$ or $y = \frac{5+2x}{x^2}$ or $y = \frac{1}{x}(\frac{5}{x} + 2)$ A1 $$ (iii) read from graph or substitute in formula to find x M1 $x = 2.5 \pm 0.2$ A1 $y = 1.6 \pm 0.1$ A1			-		
find mid-point MI use m_{AB} , $m_{M2} = -1$ and coordinates of a point MI $y+3 = -\frac{1}{2}(x-3)$ or $x+2y+3 = 0$ or $y = -\frac{1}{2}x-\frac{3}{2}$ A1 10 (i) $\frac{dy}{dx} = 3x^2 - 16x + 16$ B1 cquate to 0 and solve 3 term quadratic MI x = 4, y = 0 A1 AG $x = \frac{4}{3}y = 9\frac{13}{27}$ or $\frac{256}{27}$ or 9.48 or 9.5 A1 (ii) integrate MI $\frac{x^4}{4} - \frac{8x^3}{3} + 8x^2$ A1 use limits of 4 (and 0) DM1 $21\frac{1}{3}$ or 21.3 A1 (iii) attempt at gradient using plotted points DM1 5 ± 0.2 A1 intercept 2 ± 0.1 B1 (or A1 if calculated from $y = mx + c$) use $Y = mX + c$ in correct way M1 $y = \frac{5}{x^2} + \frac{2}{x}$ or $y = \frac{5+x^2}{x^2}$ or $y = \frac{1}{x}(\frac{5}{x}+2)$ A1 $$ (iii) read from graph or substitute in formula to find x M1 $x = 2.5 \pm 0.2$ A1 $y = 1.6 \pm 0.1$ A1 (iii) read from graph or substitute in formula to find x M1 $x = 2.5 \pm 0.2$ A1 $y = 1.6 \pm 0.1$ A1 (iii) read from graph or substitute in formula to find x M1 $x = 2.5 \pm 0.2$ A1 $y = 1.6 \pm 0.1$ A1 (iii) read from graph or substitute in formula to find x M1 $x = 2.5 \pm 0.2$ A1 $y = 1.6 \pm 0.1$ A1 (iii) read from graph or substitute in formula to find x M1 $x = 2.5 \pm 0.2$ A1 $y = 1.6 \pm 0.1$					
use m_{xy} , $m_{xy} = -1$ and coordinates of a point M1 $y+3 = -\frac{1}{2}(x-3)$ or $x+2y+3 = 0$ or $y = -\frac{1}{2}x-\frac{3}{2}$ A1 [8] 10 (i) $\frac{dy}{dx} = 3x^2 - 16x + 16$ B1 equate to 0 and solve 3 term quadratic M1 x = 4, y = 0 A1 AG $x = \frac{4}{3}y = 9\frac{13}{27}$ or $\frac{256}{27}$ or 9.48 or 9.5 A1 (ii) integrate M1 $\frac{x^4}{4} - \frac{8x^3}{3} + 8x^2$ A1 use limits of 4 (and 0) DM1 $21\frac{1}{3}$ or 21.3 A1 [8] 11 (i) plot xy against 1/x with linear scales M1 xy = 4.5 - 3.24 - 2.82 - 2.64 - 1/x - 0.5 - 0.25 - 0.17 - 0.125 - A2, 1, 0 (ii) attempt at gradient using plotted points DM1 5 ± 0.2 A1 intercept 2 ± 0.1 B1 (or A1 if calculated from $y = mx + c$) use $Y = mX + c$ in correct way M1 $y = \frac{5}{x^2} + \frac{2}{x}$ or $y = \frac{5}{x^2}\frac{2}{x^2}$ or $y = \frac{1}{x}(\frac{5}{x} + 2) - A1\sqrt{1}$ (ii) read from graph or substitute in formula to find x M1 $x = 2.5 \pm 0.2$ A1 $y = 1.6 \pm 0.1$ A1					
$y+3 = -\frac{1}{2}(x-3) \text{ or } x+2y+3 = 0 \text{ or } y = -\frac{1}{2}x-\frac{3}{2}$ A1 10 (i) $\frac{dy}{dx} = 3x^2 - 16x + 16$ B1 equate to 0 and solve 3 term quadratic M1 $x = 4, y = 0$ A1 AG $x = \frac{4}{3}y = 9\frac{13}{27}$ or $\frac{256}{27}$ or 9.48 or 9.5 A1 (ii) integrate M1 $\frac{x^4}{4} - \frac{8x^3}{3} + 8x^2$ A1 use limits of 4 (and 0) DM1 $21\frac{1}{3}$ or 21.3 A1 (ii) attempt at gradient using plotted points M1 $\frac{xy}{4.5} - \frac{3.24}{3.24} - \frac{2.82}{2.64} - \frac{2.64}{1/x} - \frac{11}{0.25} - \frac{41}{1/x} - \frac{11}{0.5} $			1		
[8] 10 (i) $\frac{dy}{dx} = 3x^2 - 16x + 16$ B1 equate to 0 and solve 3 term quadratic M1 x = 4, y = 0 A1 AG $x = \frac{4}{3}y = 9\frac{13}{27}$ or $\frac{256}{27}$ or 9.48 or 9.5 A1 (ii) integrate M1 $\frac{x^4}{4} - \frac{8x^3}{3} + 8x^2$ A1 use limits of 4 (and 0) DM1 $21\frac{1}{3}$ or 21.3 A1 [8] 11 (i) plot xy against 1/x with linear scales M1 xy = 4.5 - 3.24 - 2.82 - 2.64 M1 1/x = 0.5 - 0.25 - 0.17 - 0.125 A2, 1, 0 (ii) attempt at gradient using plotted points DM1 5 ± 0.2 A1 intercept 2 ± 0.1 B1 (or A1 if calculated from $y = mx + c$) use $Y = mX + c$ in correct way M1 $y = \frac{5}{x^2} + \frac{2}{x}$ or $y = \frac{5+2x}{x^2}$ or $y = \frac{1}{x}(\frac{5}{x} + 2)$ A1 $$ (iii) read from graph or substitute in formula to find x M1 $x = 2.5 \pm 0.2$ A1 $y = 1.6 \pm 0.1$ A1				1	
10 (i) $\frac{dy}{dx} = 3x^2 - 16x + 16$ B1 equate to 0 and solve 3 term quadratic M1 $x = 4, y = 0$ A1 AG $x = \frac{4}{3}y = 9\frac{13}{27}$ or $\frac{256}{27}$ or 9.48 or 9.5 A1 (ii) integrate M1 $\frac{x^4}{4} - \frac{8x^3}{3} + 8x^2$ A1 use limits of 4 (and 0) DM1 $21\frac{1}{3}$ or 21.3 A1 (ii) plot xy against 1/x with linear scales M1 $xy = 4.5$ 3.24 2.82 2.64 $1/x$ 0.5 0.25 0.17 0.125 (ii) attempt at gradient using plotted points DM1 5 ± 0.2 0.1 B1 (or A1 if calculated from $y = mx + c$) use Y = mX + c in correct way M1 $y = \frac{5}{x^2} + \frac{2}{x}$ or $y = \frac{5+2x}{x^2}$ or $y = \frac{1}{x} (\frac{5}{x} + 2)$ A1 $\sqrt{1}$ (iii) read from graph or substitute in formula to find x M1 $x = 2.5 \pm 0.2$ A1 A1			2 2 2		[8]
(ii) integrate x = 4, y = 0 (ii) integrate $x = \frac{4}{3}y = 9\frac{13}{27} \text{ or } \frac{256}{27} \text{ or } 9.48 \text{ or } 9.5$ (i) integrate $\frac{x^4}{4} - \frac{8x^3}{3} + 8x^2$ (ii) use limits of 4 (and 0) $21\frac{1}{3} \text{ or } 21.3$ (ii) plot xy against 1/x with linear scales xy = 4.5 3.24 2.82 2.64 $1/x 0.5 0.25 0.17 0.125$ (ii) attempt at gradient using plotted points 5 ± 0.2 (iii) attempt at gradient using plotted points 5 ± 0.2 (iv) $x = 7 = mX + c \text{ in correct way}$ (iv) $y = \frac{5}{x^2} + \frac{2}{x} \text{ or } y = \frac{5 + 2x}{x^2} \text{ or } y = \frac{1}{x} \left(\frac{5}{x} + 2\right)$ (iv) $x = 2.5 \pm 0.2$ (iv) read from graph or substitute in formula to find x (x = 2.5 \pm 0.2) (x = 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10					[0]
(ii) integrate x = 4, y = 0 (ii) integrate $x = \frac{4}{3}y = 9\frac{13}{27} \text{ or } \frac{256}{27} \text{ or } 9.48 \text{ or } 9.5$ (i) integrate $\frac{x^4}{4} - \frac{8x^3}{3} + 8x^2$ (ii) use limits of 4 (and 0) $21\frac{1}{3} \text{ or } 21.3$ (ii) plot xy against 1/x with linear scales xy = 4.5 3.24 2.82 2.64 $1/x 0.5 0.25 0.17 0.125$ (ii) attempt at gradient using plotted points 5 ± 0.2 (iii) attempt at gradient using plotted points 5 ± 0.2 (iv) $x = 7 = mX + c \text{ in correct way}$ (iv) $y = \frac{5}{x^2} + \frac{2}{x} \text{ or } y = \frac{5 + 2x}{x^2} \text{ or } y = \frac{1}{x} \left(\frac{5}{x} + 2\right)$ (iv) $x = 2.5 \pm 0.2$ (iv) read from graph or substitute in formula to find x (x = 2.5 \pm 0.2) (x = 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10	10	(i) $\frac{\mathrm{d}y}{\mathrm{d}x} =$	$3x^2 - 16x + 16$ B	1	
$x = 4, y = 0$ A1 AG $x = \frac{4}{3}y = 9\frac{13}{27}$ or $\frac{256}{27}$ or 9.48 or 9.5 A1 (ii) integrate M1 $\frac{x^4}{4} - \frac{8x^3}{3} + 8x^2$ A1 use limits of 4 (and 0) DM1 $21\frac{1}{3}$ or 21.3 A1 (ii) plot xy against 1/x with linear scales M1 $xy = 4.5 - 3.24 - 2.82 - 2.64$ A2, 1, 0 (ii) attempt at gradient using plotted points DM1 5 ± 0.2 A1 intercept 2 ± 0.1 B1 (or A1 if calculated from $y = mx + c$) B1 $y = \frac{5}{x^2} + \frac{2}{x}$ or $y = \frac{5+2x}{x^2}$ or $y = \frac{1}{x}(\frac{5}{x} + 2)$ A1 \sqrt (iii) read from graph or substitute in formula to find x M1 $x = 2.5 \pm 0.2$ A1 $y = 1.6 \pm 0.1$ A1		uλ		r 1	
$x = \frac{4}{3}y = 9\frac{13}{27} \text{ or } \frac{256}{27} \text{ or } 9.48 \text{ or } 9.5$ A1 (ii) integrate $\frac{x^4}{4} - \frac{8x^3}{3} + 8x^2$ A1 use limits of 4 (and 0) $21\frac{1}{3} \text{ or } 21.3$ A1 11 (i) plot xy against 1/x with linear scales $xy = 4.5 = 3.24 = 2.82 = 2.64$ $1/x = 0.5 = 0.25 = 0.17 = 0.125$ A2, 1, 0 (ii) attempt at gradient using plotted points 5 ± 0.2 A1 intercept 2 ± 0.1 (iii) attempt at gradient using plotted points $y = mX + c$ use $Y = mX + c$ in correct way $y = \frac{5}{x^2} + \frac{2}{x} \text{ or } y = \frac{5+2x}{x^2} \text{ or } y = \frac{1}{x} \left(\frac{5}{x} + 2\right)$ A1 (iii) read from graph or substitute in formula to find x $x = 2.5 \pm 0.2$ $y = 1.6 \pm 0.1$ A1 M1 M1 M2 M1 M2 M2 M3 M4 M4 M4 M4 M4 M4 M4		-	-		
(ii) integrate MI $\frac{x^4}{4} - \frac{8x^3}{3} + 8x^2$ AI use limits of 4 (and 0) DMI $21\frac{1}{3} \text{ or } 21.3$ AI (i) plot xy against 1/x with linear scales MI xy 4.5 3.24 2.82 2.64 1/x 0.5 0.25 0.17 0.125 A2, 1, 0 (ii) attempt at gradient using plotted points DMI 5 ± 0.2 A1 intercept 2 ± 0.1 B1 (or A1 if calculated from $y = mx + c$) use $Y = mX + c$ in correct way MI $y = \frac{5}{x^2} + \frac{2}{x}$ or $y = \frac{5+2x}{x^2}$ or $y = \frac{1}{x} (\frac{5}{x} + 2)$ A1 $$ (iii) read from graph or substitute in formula to find x MI $x = 2.5 \pm 0.2$ A1 $y = 1.6 \pm 0.1$ AI				IAG	
(ii) integrate MI $\frac{x^4}{4} - \frac{8x^3}{3} + 8x^2$ AI use limits of 4 (and 0) DMI $21\frac{1}{3} \text{ or } 21.3$ AI (i) plot xy against 1/x with linear scales MI xy 4.5 3.24 2.82 2.64 1/x 0.5 0.25 0.17 0.125 A2, 1, 0 (ii) attempt at gradient using plotted points DMI 5 ± 0.2 A1 intercept 2 ± 0.1 B1 (or A1 if calculated from $y = mx + c$) use $Y = mX + c$ in correct way MI $y = \frac{5}{x^2} + \frac{2}{x}$ or $y = \frac{5+2x}{x^2}$ or $y = \frac{1}{x} (\frac{5}{x} + 2)$ A1 $$ (iii) read from graph or substitute in formula to find x MI $x = 2.5 \pm 0.2$ A1 $y = 1.6 \pm 0.1$ AI		$x = \frac{4}{2}$	$\frac{1}{2}y = 9\frac{13}{27}$ or $\frac{256}{27}$ or 9.48 or 9.5	1	
$\frac{x^4}{4} - \frac{8x^3}{3} + 8x^2$ use limits of 4 (and 0) $21\frac{1}{3} \text{ or } 21.3$ A1 $\frac{x^4}{4} - \frac{8x^3}{3} + 8x^2$ (8] $\frac{x^2}{4} - \frac{8x^3}{3} + 8x^2$ (8] $\frac{x^2}{4} - \frac{8x^3}{3} + 8x^2$ (8) $\frac{x^2}{4} - \frac{8x^3}{3} - \frac{8x^3}{4} - \frac{8x^3}{2} - \frac{8x^3}{4} - $		3	3 27 27		
$\frac{x^4}{4} - \frac{8x^3}{3} + 8x^2$ use limits of 4 (and 0) $21\frac{1}{3} \text{ or } 21.3$ A1 $\frac{x^4}{4} - \frac{8x^3}{3} + 8x^2$ (8] $\frac{x^2}{4} - \frac{8x^3}{3} + 8x^2$ (8] $\frac{x^2}{4} - \frac{8x^3}{3} + 8x^2$ (8) $\frac{x^2}{4} - \frac{8x^3}{3} - \frac{8x^3}{4} - \frac{8x^3}{2} - \frac{8x^3}{4} - $	((ii) integ	rate N	[1	
use limits of 4 (and 0) DM1 $21\frac{1}{3}$ or 21.3 A1 11 (i) plot xy against 1/x with linear scales M1 xy 4.5 3.24 2.82 2.64 1/x 0.5 0.25 0.17 0.125 A2, 1, 0 (ii) attempt at gradient using plotted points DM1 5 ± 0.2 A1 intercept 2 ± 0.1 B1 (or A1 if calculated from $y = mx + c$) use $Y = mX + c$ in correct way M1 $y = \frac{5}{x^2} + \frac{2}{x}$ or $y = \frac{5+2x}{x^2}$ or $y = \frac{1}{x} (\frac{5}{x} + 2)$ A1 $$ (iii) read from graph or substitute in formula to find x M1 $x = 2.5 \pm 0.2$ A1 $y = 1.6 \pm 0.1$ A1	•	· / ·			
$21\frac{1}{3}$ or 21.3 A1 11 (i) plot xy against 1/x with linear scales xy 4.5 3.24 2.82 2.64 1/x 0.5 0.25 0.17 0.125 M1 x2, 1, 0 (ii) attempt at gradient using plotted points 5 ± 0.2 A1 intercept 2 ± 0.1 B1 (or A1 if calculated from $y = mx + c$) M1 $y = \frac{5}{x^2} + \frac{2}{x}$ or $y = \frac{5+2x}{x^2}$ or $y = \frac{1}{x}(\frac{5}{x}+2)$ A1 $\sqrt{1/x}$ (iii) read from graph or substitute in formula to find x M1 $x = 2.5 \pm 0.2$ A1 $y = 1.6 \pm 0.1$ A1		$\frac{\pi}{4}$	$\frac{3x^2}{3} + 8x^2$ A	1	
$21\frac{1}{3}$ or 21.3 A1 11 (i) plot xy against 1/x with linear scales xy 4.5 3.24 2.82 2.64 1/x 0.5 0.25 0.17 0.125 M1 x2, 1, 0 (ii) attempt at gradient using plotted points 5 ± 0.2 A1 intercept 2 ± 0.1 B1 (or A1 if calculated from $y = mx + c$) M1 $y = \frac{5}{x^2} + \frac{2}{x}$ or $y = \frac{5+2x}{x^2}$ or $y = \frac{1}{x}(\frac{5}{x}+2)$ A1 $\sqrt{1/x}$ (iii) read from graph or substitute in formula to find x M1 $x = 2.5 \pm 0.2$ A1 $y = 1.6 \pm 0.1$ A1		use li	imits of 4 (and 0) D	M1	
[8] 11 (i) plot xy against 1/x with linear scales M1 xy = 4.5 = 3.24 = 2.82 = 2.64 1/x = 0.5 = 0.25 = 0.17 = 0.125 A2, 1, 0 (ii) attempt at gradient using plotted points DM1 5 ± 0.2 A1 intercept 2 ± 0.1 B1 (or A1 if calculated from $y = mx + c$) use $Y = mX + c$ in correct way M1 $y = \frac{5}{x^2} + \frac{2}{x}$ or $y = \frac{5 + 2x}{x^2}$ or $y = \frac{1}{x} \left(\frac{5}{x} + 2\right)$ A1 $$ (iii) read from graph or substitute in formula to find x M1 $x = 2.5 \pm 0.2$ A1 $y = 1.6 \pm 0.1$ A1				1	
11 (i) plot xy against 1/x with linear scales M1 xy 4.5 3.24 2.82 2.64 1/x 0.5 0.25 0.17 0.125 A2, 1, 0 (ii) attempt at gradient using plotted points DM1 5 ± 0.2 A1 intercept 2 ± 0.1 B1 (or A1 if calculated from $y = mx + c$) use $Y = mX + c$ in correct way M1 $y = \frac{5}{x^2} + \frac{2}{x}$ or $y = \frac{5+2x}{x^2}$ or $y = \frac{1}{x} \left(\frac{5}{x} + 2\right)$ A1 $$ (iii) read from graph or substitute in formula to find x M1 $x = 2.5 \pm 0.2$ A1 $y = 1.6 \pm 0.1$ A1		$\frac{21}{3}$	01 21.5	1	
(ii) attempt at gradient using plotted points 5 ± 0.2 $y = \frac{5}{x^2} + \frac{2}{x} \text{ or } y = \frac{5+2x}{x^2} \text{ or } y = \frac{1}{x} \left(\frac{5}{x} + 2\right)$ (ii) read from graph or substitute in formula to find x $x = 2.5 \pm 0.2$ $x = \frac{5}{x^2} + \frac{2}{x} + \frac$					[8]
$1/x$ 0.5 0.25 0.17 0.125 $A2, 1, 0$ (ii)attempt at gradient using plotted points 5 ± 0.2 intercept 2 ± 0.1 (or A1 if calculated from $y = mx + c$) use $Y = mX + c$ in correct way $y = \frac{5}{x^2} + \frac{2}{x}$ or $y = \frac{5+2x}{x^2}$ or $y = \frac{1}{x} \left(\frac{5}{x} + 2\right)$ M1 $A1\sqrt$ (iii)read from graph or substitute in formula to find x $y = 1.6\pm 0.1$ M1 A1	11 ((i) plot x	<i>xy</i> against $1/x$ with linear scales N	[1	
(ii) attempt at gradient using plotted points DM1 5 ± 0.2 A1 intercept 2 ± 0.1 B1 (or A1 if calculated from $y = mx + c$) use $Y = mX + c$ in correct way M1 $y = \frac{5}{x^2} + \frac{2}{x}$ or $y = \frac{5+2x}{x^2}$ or $y = \frac{1}{x}\left(\frac{5}{x}+2\right)$ A1 $$ (iii) read from graph or substitute in formula to find x M1 $x = 2.5\pm 0.2$ A1 $y = 1.6\pm 0.1$ A1		•			
5 ± 0.2 intercept 2 ± 0.1 (or A1 if calculated from $y = mx + c$) use $Y = mX + c$ in correct way $y = \frac{5}{x^2} + \frac{2}{x}$ or $y = \frac{5 + 2x}{x^2}$ or $y = \frac{1}{x} \left(\frac{5}{x} + 2\right)$ A1 $$ (iii) read from graph or substitute in formula to find x $x = 2.5 \pm 0.2$ $y = 1.6 \pm 0.1$ A1		1/x	0.5 0.25 0.17 0.125 A	2, 1, 0	
5 ± 0.2 intercept 2 ± 0.1 (or A1 if calculated from $y = mx + c$) use $Y = mX + c$ in correct way $y = \frac{5}{x^2} + \frac{2}{x}$ or $y = \frac{5 + 2x}{x^2}$ or $y = \frac{1}{x} \left(\frac{5}{x} + 2\right)$ A1 $$ (iii) read from graph or substitute in formula to find x $x = 2.5 \pm 0.2$ $y = 1.6 \pm 0.1$ A1	((ii) attem	npt at gradient using plotted points D	M1	
(or A1 if calculated from $y = mx + c$) use $Y = mX + c$ in correct way M1 $y = \frac{5}{x^2} + \frac{2}{x}$ or $y = \frac{5+2x}{x^2}$ or $y = \frac{1}{x}\left(\frac{5}{x}+2\right)$ A1 $$ (iii) read from graph or substitute in formula to find x M1 $x = 2.5 \pm 0.2$ A1 $y = 1.6 \pm 0.1$ A1	,			1	
use $Y = mX + c$ in correct way $y = \frac{5}{x^2} + \frac{2}{x}$ or $y = \frac{5+2x}{x^2}$ or $y = \frac{1}{x}\left(\frac{5}{x}+2\right)$ (iii) read from graph or substitute in formula to find x $x = 2.5 \pm 0.2$ $y = 1.6 \pm 0.1$ M1 A1 M1 A1		interc	cept 2 ± 0.1 B	1	
$y = \frac{5}{x^2} + \frac{2}{x} \text{ or } y = \frac{5+2x}{x^2} \text{ or } y = \frac{1}{x} \left(\frac{5}{x} + 2\right) $ A1 $$ (iii) read from graph or substitute in formula to find x M1 $x = 2.5 \pm 0.2$ A1 $y = 1.6 \pm 0.1$ A1		(or A	1 if calculated from $y = mx + c$)		
(iii) read from graph or substitute in formula to find x M1 $x = 2.5 \pm 0.2$ A1 $y = 1.6 \pm 0.1$ A1		use }	V = mX + c in correct way N	[1	
(iii) read from graph or substitute in formula to find x M1 $x = 2.5 \pm 0.2$ A1 $y = 1.6 \pm 0.1$ A1		17 —	$\frac{5}{2} + \frac{2}{2}$ or $y = \frac{5+2x}{2}$ or $y = \frac{1}{5} + \frac{5}{2}$	1 \	
$x = 2.5 \pm 0.2$ A1 $y = 1.6 \pm 0.1$ A1		$y = -\frac{1}{y}$	$\frac{1}{x^2} + \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x$	1 1	
$x = 2.5 \pm 0.2$ A1 $y = 1.6 \pm 0.1$ A1	G	iii) read	from graph or substitute in formula to find x N	[1	
$y = 1.6 \pm 0.1$ A1	(·				
[11]					
		-			[11]

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2008	0606	02
	HER		
(i) $\frac{OC}{2}$	= cos 0.6 or $OC = 2\cos 0.6$ or $\frac{OC}{\sin 0.97} = \frac{2}{\sin \frac{\pi}{2}}$ M1		
1.65	2 A1		
CD	$= 2\sin 0.6 \text{ or } CD = \sqrt{OD^2 - OC^2} $ M1		
1.13	A1		
(ii) 6×0	B1 B1		
com	plete plan $CD + 4 + r\theta + (6 - 1.65)$ M1		
13.1	Al		
(iii) $\frac{1}{2} \times 0^{-1}$	$6^2 \times 0.6$ B1		
com	plete plan $\frac{1}{2}r^2\theta - \frac{1}{2} \times OC \times CD$ M1		
9.87	2 2 A1		
			[1

OR

(i)	$2t^2 - 12t + 16$ equate to 0 and solve quadratic for 2 values 2 and 4	B1+B1+B1 M1 A1	
(ii)	$s = \int v \mathrm{d}t$	M1	
	$\frac{2}{3}t^3 - 6t^2 + 16t$	A 2, 1, 0√	
	use limits and subtract	DM1	
	$2\frac{2}{3}$ or 2.67	A1	
	5		[10]

[10]