UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

0606 ADDITIONAL MATHEMATICS

0606/13 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2012		13

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Page 3 Mark Scheme: Teachers' version		Paper
IGCSE – May/June 2012		0606	13

The following abbreviations may be used in a mark scheme or used on the scripts:

AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{\ }$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	ge 4 Mark Scheme: Teachers' version		Paper
IGCSE – May/June 2012		0606	13

1	(ii) $2x-5=\pm 3$, leading to $x=1,4$	B1 B1 B1, B1 [4]	B1 for shape B1 for both intercepts
2	f(-2): 4a - 2b = 46 $f\left(\frac{1}{2}\right): a + 2b = -21$	M1 M1	M1 for substitution of $x = -2$ and equating to zero M1 for substitution of $x = 0.5$ and equating to -35
	a = 5, b = -13	M1 A1 A1 [5]	M1 for solution of equations
3	$x^{2} + x(k-2) + (5-k) = 0$ Using 'b ² > 4ac', (k-2 ²) > 4(5-k) $k^{2} > 16$ $k > 4, k < -4$	M1 DM1 A1 A1 A1, A1	M1 for equating line and curve DM1 for use of $b^2 > 4ac$ b = k - 2 and $c = 5 - kAccept < = \ge \le etc.A1 for each$
4	(a) (i) 15120	B1	
	(ii) 210	B1	
	(b) (i) 15504	B1	
	(ii) ${}^{12}C_{10} \times {}^{8}C_{5}$ = 3696	B1, B1 B1	
	(iii) 56	B1 [7]	
5	(i) (0, 4)	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 4x - 3$	M1	M1 for differentiation
	When $x = 0$, $\frac{dy}{dx} = -3$	M1	M1 for attempt at line equation
	y - 4 = -3x	A1	
	(ii) $4-3x = x^3 + 2x^2 - 3x + 4$ leading to, $0 = x^3 + 2x^2$, (-2, 10)	M1 M1 A1 [7]	M1 for equating line and curve M1 for solution of cubic A1 need x and y

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
IGCSE – May/June 2012		0606	13

6 (i) $15 + 2\frac{\sin^2\theta}{\cos^2\theta} = \frac{7}{\cos^2\theta}$ $15 + 2\tan^2\theta = 7\sec^2\theta$ $15 + 2\tan^2\theta = 7(1 + \tan^2\theta)$ $15 + 2\sin^2\theta = 7(\cos^2\theta + \sin^2\theta)$ $15\cos^2\theta + 2\sin^2\theta = 7(\cos^2\theta + \sin^2\theta)$ $15\cos^2\theta + 2\sin^2\theta = 8\frac{8}{5}$ $15\cos^2\theta + 2\sin^2\theta = 8\cos^2\theta$ $15\cos^2\theta + 3\cos^2\theta + 3\cos^2\theta$ $15\cos^2\theta +$	1
$15 + 2\tan^2\theta = 7(1 + \tan^2\theta)$ $15 + 2\tan^2\theta = 8 + \tan^2\theta$ $15 + 2\tan^2\theta = 1 +$	1
leading to $\tan^2\theta = \frac{8}{5}$ or $15\cos^2\theta + 2\sin^2\theta = 7(\cos^2\theta + \sin^2\theta)$ $8\cos^2\theta = 5\sin^2\theta$ leading to $\tan^2\theta = \frac{8}{5}$ (ii) $\tan\theta = \pm\sqrt{\frac{8}{5}}$ A1 for rearrangement to get require result [M1] M1 for use of identity M1 for simplification [M1] M1 for use of $\tan\theta = \frac{\sin\theta}{\cos\theta}$	i
or $15\cos^{2}\theta + 2\sin^{2}\theta = 7(\cos^{2}\theta + \sin^{2}\theta)$ $8\cos^{2}\theta = 5\sin^{2}\theta$ $[M1]$ $[M1]$ $M1 \text{ for use of identity}$ $M1 \text{ for use of tan } \theta = \frac{\sin\theta}{\cos\theta}$ $[A1]$ $[M1]$ $[A1]$ $M1 \text{ for use of tan } \theta = \frac{\sin\theta}{\cos\theta}$ $[A1]$ $M1 \text{ for attempt to solve}$	d
$15\cos^{2}\theta + 2\sin^{2}\theta = 7(\cos^{2}\theta + \sin^{2}\theta)$ $8\cos^{2}\theta = 5\sin^{2}\theta$ $1\cos^{2}\theta = 5\sin^{2}\theta$ $1\cos^{2}\theta = 5\sin^{2}\theta$ $1\cos^{2}\theta = 5\sin^{2}\theta$ $1\cos^{2}\theta = \sin^{2}\theta$ $1\cos^$	
(ii) $\tan \theta = \pm \sqrt{\frac{8}{5}}$	
	Į.
leading to $\theta = 0.902, 2.24$ A1, A1	
(also, $\sin \theta = \pm \sqrt{\frac{8}{13}}$, $\cos \theta = \pm \sqrt{\frac{5}{13}}$) [M1] [M1] for attempt to solve	
7 (i) $\frac{y}{x} = A + Bx$ B1	
	nd
A2, 1, 0 —1 each error	
(ii) Grad = $B = -0.5$ Intercept = $A = 3$ $M1, A1$ $M1 \text{ for grad} = B$ $M1, A1$ $[8]$	
8 (a) $2 \lg x - \lg(5x + 60) = \lg 10$ $\frac{x^2}{5x + 60} = 10$ B1 B1 for $\lg 10$ B1 B1 for dealing with 'power' M1 for dealing with division	
leading to $x^2 - 50x - 600 = 0$ $x = 60$ DM1 DM1 for attempt to solve quadratic	
(b) $\log_5 y = \frac{4\log_5 5}{\log_5 y}$ M1 M1 for change of base	
$(\log_5 y)^2 = 4$ M1 for valid attempt to solve $\log_5 y = \pm 2$	
$y = 25, \frac{1}{25}$ A1,A1 [9]	

Page 6 Mark Scheme: Teachers' version		Syllabus	Paper
IGCSE – May/June 2012		0606	13

9	$120(p^7q^3)$ and $(45)(p^8q^2)$	B3,2,1,0	-1 per element (of 4) incorrect
	$120p^7q^3 = 270p^8q^2$	M1	M1 for equating and multiplying by 6
	$252p^5q^5 = 252$	B1	B1 for $252p^5q^5$
	pq = 1 and $4q = 9p$	B1	B1 for $pq = 1$ OR $4p = 9q$
	leading to $p = \frac{2}{3}$, $q = \frac{3}{2}$	A1, A1 [8]	A1 for each
10	(i) $\frac{dy}{dx} = 2e^{2x} - 2e^{-2x}$	B1,B1	One per term
	(ii) $3 = 2e^{2x} - 2e^{-2x}$	M1	M1 for attempt to obtain in 'quadratic'
	$2e^{4x} - 3e^{2x} - 2 = 0$ $(2e^{2x} + 1)(e^{2x} - 2) = 0$	DM1 M1	form DM1 for attempt to solve M1 for attempt to solve for y
	$e^{2x} = 2, \ y = \frac{5}{2}$	A1	1411 for attempt to solve for y
	(iii) $\frac{dx}{dt} = -0.5$, $\frac{dy}{dt} = (2e^2 - 2e^{-2}) \times (-0.5)$ = -7.25	M1, M1	M1 for substitution of $x = 1$ M1 for correct application of chain rule
		[9]	
11	EITHER (i) $\frac{dy}{dx} = 18x - 3x^2$	M1	M1 for differentiation
	When $\frac{dy}{dx} = 0$, $0 = 3x(6-x)$	M1	M1 for equating to zero and attempt to solve
	Turning points when $x = 0$, 6 When $x = 6$, $y = 108$	M1 A1	M1 for finding y
	(ii) Area $\left[3x^3 - \frac{x^4}{4}\right]_0^9$	M1, A1	M1 for attempt to integrate
	= 546.75 $B(0, -18)$	DM1,A1	DM1 for correct application of limits
	Area of triangle = 81 Total Area = 628	B1 A1	B1 for area of triangle
	Or: Area = $\int_{0}^{9} 9x^2 - x^3 - 2x + 18$ dx	[M1] [A3,2,1,0]	
	$\left[3x^3 - \frac{x^4}{4} - x^2 + 18x\right]_0^9 = 628$	[DM1,A1] [10]	

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2012		13

11	OR			
	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6\cos 3x$	B1	B1 for differentiation
		When $x = \frac{\pi}{9}$, $\frac{dy}{dx} = 3$, $y = \sqrt{3}$	B1	For y
		Equation of normal		
		$y - \sqrt{3} = -\frac{1}{3} \left(x - \frac{\pi}{9} \right)$	M1 M1	Use of $m_1m_2 = -1$ M1 for equation of normal and attempt to solve when $x = 0$
		When $x = 0$, $y = 1.85$	A1	solve when $x = 0$
	(ii)	$\frac{1}{2}\left(\sqrt{3}+1.85\right)\frac{\pi}{9}-\int_{0}^{\frac{\pi}{9}}2\sin 3x dx$	B1	B1 for trapezium – allow unsimplified
		$0.6251 \qquad -\left[-\frac{2}{3}\cos 3x\right]_0^{\frac{\pi}{9}}$	M1 A1	M1 for attempt to integrate A1 correct integration
		$0.6251 - \left(\frac{1}{3}\right) = 0.292$	M1, A1	M1 for correct application of limits
		Alt method:		
		Area = $\int_0^{\frac{\pi}{9}} \sqrt{3} - \frac{1}{3} \left(x - \frac{\pi}{9} \right) - 2\sin 3x dx$	[M1] [A2,1,0]	
		$\left[\sqrt{3}x - \frac{x^2}{6} + \frac{\pi x}{27} + \frac{2}{3}\cos 3x\right]_0^{\frac{\pi}{9}} = 0.292$	[DM1] [A1] [10]	