MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

0606 ADDITIONAL MATHEMATICS

0606/11

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Page 2 Mark Scheme: Teachers' version		Paper
	IGCSE – May/June 2012	0606	11

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2012	0606	11

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

	Page 4	Mark Scheme: Tea		Syllabus	Paper		
		IGCSE – May/	June 2012	0606	11		
1	(i)		B1 B1	B1 for shapeB1 for both intercepts			
	(ii) $2x - 5 = \pm 3$, leadi x = 1, 4	ng to	B1, B1 [4]				
2	2 $f(-2): 4a - 2b = 46$ $f\left(\frac{1}{2}\right): a + 2b = -21$			M1 for substitution of $x = -2$ and equating to zero M1 for substitution of $x = 0.5$ and equating to -35			
	a = 5, b = -13		M1 A1 A1 [5]	M1 for solution of equations			
3	$x^{2} + x(k-2) + (5-k) =$ Using ' $b^{2} > 4ac$ ', (k - 2 $k^{2} > 16$ k > 4, k < -4		M1 DM1 A1 A1 A1, A1 [6]	M1 for equating line ar DM1 for use of $b^2 > 4a$ b = k - 2 and $c = 5 - kAccept < = \ge \le etc.A1 for each$	nd curve c		
4	(a) (i) 15120		B1				
	(ii) 210		B1				
	(b) (i) 15504 (ii) ${}^{12}C_{10} \times {}^{8}C_{5}$ = 3696		B1 B1, B1 B1				
	(iii) 56		B1 [7]				
5	(i) (0, 4) $\frac{dy}{dx} = 3x^2 + 4x - 3$ we get the second		B1 M1	M1 for differentiation			
	When $x = 0$, $\frac{dy}{dx} = y - 4 = -3x$ (ii) $4 - 3x = x^3 + 2x^2 - 3x$	-3x + 4	M1 A1 M1	M1 for attempt at line of M1 for equating line ar	-		
	(ii) i chi ii chi ch		M1 A1 [7]	M1 for solution of cubic A1 need x and y			

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2012	0606	11

6	(i)	$15 + 2\frac{\sin^2 \theta}{\cos^2 \theta} = \frac{7}{\cos^2 \theta}$ $15 + 2\tan^2 \theta = 7 \sec^2 \theta$	M1 M1	M1 for dividing by $\cos^2 \theta$ M1 for $\frac{1}{\cos^2 \theta} = \sec^2 \theta$
				005 0
		$15 + 2\tan^2 \theta = 7(1 + \tan^2 \theta)$	M1	M1 for $\sec^2 \theta = 1 + \tan^2 \theta$
		leading to $\tan^2 \theta = \frac{8}{5}$ or	A1	A1 for rearrangement to get required result
		$15\cos^2 \theta + 2\sin^2 \theta = 7(\cos^2 \theta + \sin^2 \theta)$ $8\cos^2 \theta = 5\sin^2 \theta$	[M1] [M1]	M1 for use of identity M1 for simplification
		leading to $\tan^2 \theta = \frac{8}{5}$	[M1] [A1]	M1 for use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$
	(ii)	$\tan \theta = \pm \sqrt{\frac{8}{5}}$	M1	M1 for attempt to solve
		leading to $\theta = 0.902, 2.24$	A1, A1	
		(also, $\sin \theta = \pm \sqrt{\frac{8}{13}}$, $\cos \theta = \pm \sqrt{\frac{5}{13}}$)	[M1] [7]	M1 for attempt to solve
7	(i)	$\frac{y}{x} = A + Bx$	B1	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	M1 for attempt to calculate points and plot
			A2, 1, 0	-1 each error
	(ii)	Grad = B = -0.5 Intercept = $A = 3$	M1, A1 M1, A1 [8]	M1 for grad = B M1 for intercept = A
8	(a)	$2\lg x - \lg(5x + 60) = \lg 10$ $\frac{x^2}{5x + 60} = 10$	B1 B1 M1	B1 for lg 10B1 for dealing with 'power'M1 for dealing with division
		leading to $x^2 - 50x - 600 = 0$ x = 60	DM1 A1	DM1 for attempt to solve quadratic
	(b)	$\log_5 y = \frac{4\log_5 5}{\log_5 y}$	M1	M1 for change of base
		$(\log_5 y)^2 = 4$ $\log_5 y = \pm 2$	M1	M1 for valid attempt to solve
		$y = 25, \frac{1}{25}$	A1,A1 [9]	

	Page 6				Syllabus	Paper	
		IGCSE – May/June 2012		0606	11		
9	$120(p^7q^3)$	$120(p^7q^3)$ and $(45)(p^8q^2)$ B3,2,1,0 -		-1 pe	-1 per element (of 4) incorrect		
	$120p^{7}q^{3} =$	$=270p^{8}q^{2}$	M1	M1 for equating and multiplying by		ultiplying by 6	
	$252p^5q^5 =$	= 252	B1	B1 fc	B1 for $252p^5q^5$		
	pq = 1 and	nd $4q = 9p$	B1	B1 fc	B1 for $pq = 1$ OR $4p = 9q$		
	leading to	$p = \frac{2}{3}, q = \frac{3}{2}$	A1, A1 [8]	A1 fo	A1 for each		
10	(i) $\frac{\mathrm{d}y}{\mathrm{d}x} =$	$= 2e^{2x} - 2e^{-2x}$	B1,B1	One j	per term		
	(ii) 3 = 2	$2e^{2x} - 2e^{-2x}$	M1	M1 form	or attempt to obtain	in in 'quadratic'	
		$-3e^{2x} - 2 = 0$ (x + 1)(e^{2x} - 2) = 0	DM1 M1	DM1	for attempt to solve or attempt to solve		
	$e^{2x} =$	2, $y = \frac{5}{2}$	A1				
	(iii) $\frac{\mathrm{d}x}{\mathrm{d}t} =$	= -0.5,			M1 for substitution of $x = 1$ M1 for correct application of chain ru		
	$\frac{\mathrm{d}y}{\mathrm{d}t} =$	$=(2e^2-2e^{-2})\times(-0.5)$	M1, M1				
	=-7	.25	A1 [9]				
11	EITHER						
	(i) $\frac{\mathrm{d}y}{\mathrm{d}x} =$	$=18x-3x^2$	M1	M1 f	or differentiation		
	Whe	$\ln \frac{\mathrm{d}y}{\mathrm{d}x} = 0, \ 0 = 3x(6-x)$	M1		or equating to zero	o and attempt to	
	Turn	thing points when $x = 0, 6$ on $x = 6, y = 108$	M1 A1	solve M1 for finding <i>y</i> M1 for attempt to integrate			
	(ii) Area	$1\left[3x^3-\frac{x^4}{4}\right]_0^9$	M1, A1			grate	
	= 54 B(0,		DM1,A1	DM1	for correct applic	ation of limits	
	Area Tota	n of triangle = 81 1 Area = 628	B1 A1	B1 fc	or area of triangle		
		Area = $\int_{0}^{9} 9x^2 - x^3 - 2x + 18 dx$	[M1] [A3,2,1,0]				
	$3x^3$	$\left[3 - \frac{x^4}{4} - x^2 + 18x\right]_0^9 = 628$	[DM1,A1] [10]				

	Page 7		Mark Scheme: Teachers' version		Syllabus	Paper	
			IGCSE – May/June	IGCSE – May/June 2012		0606	11
11	OR						
	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6\mathrm{co}$	s3 <i>x</i>	B 1	B1 f	for differentiation	
			$=\frac{\pi}{9}, \ \frac{\mathrm{d}y}{\mathrm{d}x} = 3, \ y = \sqrt{3}$	B 1	For	V	
		Equation					
		$y - \sqrt{3} =$	$-\frac{1}{3}\left(x-\frac{\pi}{9}\right)$	M1 M1	M1	of $m_1m_2 = -1$ for equation of norm e when $x = 0$	nal and attempt to
		When $x =$	0, $y = 1.85$	A1	5017	c when $x = 0$	
	(ii)	$\frac{1}{2}\left(\sqrt{3}+1\right)$	$85\bigg)\frac{\pi}{9} - \int_0^{\frac{\pi}{9}} 2\sin 3x dx$	B1	B1 f	for trapezium – allo	w unsimplified
		0.6251	$-\left[-\frac{2}{3}\cos 3x\right]_{0}^{\frac{\pi}{9}}$	M1 A1		for attempt to integ correct integration	rate
		0.6251 - ($\left(\frac{1}{3}\right) = 0.292$	M1, A1	M1	for correct applicat	on of limits
		Alt metho	od:				
		Area = \int_{0}^{1}	$\int_{0}^{\frac{\pi}{9}} \sqrt{3} - \frac{1}{3} \left(x - \frac{\pi}{9} \right) - 2 \sin 3x dx$	[M1] [A2,1,0]			
		$\left[\sqrt{3}x - \frac{x}{6}\right]$	$\int_{0}^{2} +\frac{\pi x}{27} + \frac{2}{3}\cos 3x \bigg]_{0}^{\frac{\pi}{9}} = 0.292$	[DM1] [A1] [10]			