SYLLABUS

Cambridge IGCSE ${ }^{\circledR}$
Mathematics
Cambridge International Certificate*
0580

For examination in June and November 2014

Cambridge IGCSE ${ }^{\circledR}$
 Mathematics (with Coursework)
 0581

For examination in June and November 2014

[^0]University of Cambridge International Examinations retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party even for internal use within a Centre.
® IGCSE is the registered trademark of University of Cambridge International Examinations
© University of Cambridge International Examinations 2011

Contents

1. Introduction 2
1.1 Why choose Cambridge?
1.2 Why choose Cambridge IGCSE?
1.3 Why choose Cambridge IGCSE Mathematics?
1.4 Cambridge International Certificate of Education (ICE)
1.5 Schools in England, Wales and Northern Ireland
1.6 How can I find out more?
2. Assessment at a glance 5
3. Syllabus aims and assessment 7
3.1 Syllabus aims
3.2 Assessment objectives and their weighting in the exam papers
4. Curriculum content 10
4.1 Grade descriptions
5. Coursework: guidance for centres 20
5.1 Procedure
5.2 Selection of Coursework assignments
5.3 Suggested topics for Coursework assignments
5.4 Controlled elements
6. Coursework assessment criteria 23
6.1 Scheme of assessment for Coursework assignments
6.2 Moderation
7. Appendix A 29
8. Appendix B: Additional information 33
9. Appendix C: Additional information - Cambridge International Level 1/Level 2 Certificates 35

1. Introduction

1.1 Why choose Cambridge?

University of Cambridge International Examinations is the world's largest provider of international education programmes and qualifications for 5 to 19 year olds. We are part of the University of Cambridge, trusted for excellence in education. Our qualifications are recognised by the world's universities and employers.

Recognition

Every year, thousands of learners gain the Cambridge qualifications they need to enter the world's universities.

Cambridge IGCSE ${ }^{\circledR}$ (International General Certificate of Secondary Education) is internationally recognised by schools, universities and employers as equivalent to UK GCSE. Learn more at
www.cie.org.uk/recognition

Excellence in education

We understand education. We work with over 9000 schools in over 160 countries who offer our programmes and qualifications. Understanding learners' needs around the world means listening carefully to our community of schools, and we are pleased that 98% of Cambridge schools say they would recommend us to other schools.

Our mission is to provide excellence in education, and our vision is that Cambridge learners become confident, responsible, innovative and engaged.

Cambridge programmes and qualifications help Cambridge learners to become:

- confident in working with information and ideas - their own and those of others
- responsible for themselves, responsive to and respectful of others
- innovative and equipped for new and future challenges
- engaged intellectually and socially, ready to make a difference.

Support in the classroom

We provide a world-class support service for Cambridge teachers and exams officers. We offer a wide range of teacher materials to Cambridge schools, plus teacher training (online and face-to-face), expert advice and learner-support materials. Exams officers can trust in reliable, efficient administration of exams entry and excellent, personal support from our customer services. Learn more at

www.cie.org.uk/teachers

Not-for-profit, part of the University of Cambridge

We are a part of Cambridge Assessment, a department of the University of Cambridge and a not-for-profit organisation.

We invest constantly in research and development to improve our programmes and qualifications.

1.2 Why choose Cambridge IGCSE?

Cambridge IGCSE helps your school improve learners' performance. Learners develop not only knowledge and understanding, but also skills in creative thinking, enquiry and problem solving, helping them to perform well and prepare for the next stage of their education.

Cambridge IGCSE is the world's most popular international curriculum for 14 to 16 year olds, leading to globally recognised and valued Cambridge IGCSE qualifications. It is part of the Cambridge Secondary 2 stage.

Schools worldwide have helped develop Cambridge IGCSE, which provides an excellent preparation for Cambridge International AS and A Levels, Cambridge Pre-U, Cambridge AICE (Advanced International Certificate of Education) and other education programmes, such as the US Advanced Placement Program and the International Baccalaureate Diploma. Cambridge IGCSE incorporates the best in international education for learners at this level. It develops in line with changing needs, and we update and extend it regularly.

1.3 Why choose Cambridge IGCSE Mathematics?

Cambridge IGCSE Mathematics is accepted by universities and employers as proof of mathematical knowledge and understanding. Successful Cambridge IGCSE Mathematics candidates gain lifelong skills, including:

- the development of their mathematical knowledge;
- confidence by developing a feel for numbers, patterns and relationships;
- an ability to consider and solve problems and present and interpret results;
- communication and reason using mathematical concepts;
- a solid foundation for further study.

Cambridge IGCSE Mathematics is structured with a Coursework option and is ideal for candidates of all abilities. There are a number of mathematics syllabuses at both Cambridge IGCSE and Cambridge International AS \& A Level offered by Cambridge - further information is available on the Cambridge website at www.cie.org.uk

1.4 Cambridge International Certificate of Education (ICE)

Cambridge ICE is the group award of Cambridge IGCSE. It gives schools the opportunity to benefit from offering a broad and balanced curriculum by recognising the achievements of learners who pass examinations in at least seven subjects. Learners draw subjects from five subject groups, including two languages, and one subject from each of the other subject groups. The seventh subject can be taken from any of the five subject groups.

Mathematics falls into Group IV, Mathematics.
Learn more about Cambridge IGCSE and Cambridge ICE at www.cie.org.uk/cambridgesecondary2

1.5 Schools in England, Wales and Northern Ireland

This Cambridge IGCSE is approved for regulation in England, Wales and Northern Ireland. It appears on the Register of Regulated Qualifications http://register.ofqual.gov.uk as a Cambridge International Level $1 /$ Level 2 Certificate. There is more information for schools in England, Wales and Northern Ireland in Appendix C to this syllabus.

School and college performance tables

Cambridge IGCSEs which are approved by Ofqual are eligible for inclusion in school and college performance tables.

For up-to-date information on the performance tables, including the list of qualifications which count towards the English Baccalaureate, please go to the Department for Education website (www.education.gov.uk/performancetables). All approved Cambridge IGCSEs are listed as Cambridge International Level 1/Level 2 Certificates.

1.6 How can I find out more?

If you are already a Cambridge school
You can make entries for this qualification through your usual channels. If you have any questions, please contact us at international@cie.org.uk

If you are not yet a Cambridge school

Learn about the benefits of becoming a Cambridge school at www.cie.org.uk/startcambridge.

Email us at international@cie.org.uk to find out how your organisation can become a Cambridge school.

2. Assessment at a glance

Syllabus 0580 (without coursework) 1

Core curriculum Grades available: C-G	Extended curriculum Grades available: A*-E
Paper 1 1 hour Short-answer questions. Candidates should answer each question. Weighting: 35\%	Paper 2 Short-answer questions. Candidates should answer each question. Weighting: 35\%
Paper 3 2 hours Structured questions. Candidates should answer each question. Weighting: 65\%	Paper 4 $21 / 2$ hours Structured questions. Candidates should answer each question. Weighting: 65\%

Syllabus 0581 (with coursework)

Core curriculum Grades available: C-G	Extended curriculum Grades available: $A^{*}-E$
Paper 1 1 hour Short-answer questions. Candidates should answer each question. Weighting: 30\%	Paper 2 $11 / 2$ hours Short-answer questions. Candidates should answer each question. Weighting: 30\%
Paper 3 Structured questions. Candidates should answer each question. Weighting: 50\%	Paper 4 Structured questions. Candidates should answer each question. Weighting: 50\%
Paper 5 Coursework. Weighting: 20\%	Paper 6 Coursework. Weighting: 20\%

[^1]- Candidates should have an electronic calculator for all papers. Algebraic or graphical calculators are not permitted. Three significant figures will be required in answers except where otherwise stated.
- Candidates should use the value of π from their calculators if their calculator provides this. Otherwise, they should use the value of 3.142 given on the front page of the question paper only.
- Tracing paper may be used as an additional material for each of the written papers.
- For syllabus 0581, the Coursework components (papers 5 and 6) will be assessed by the teacher using the criteria given in this syllabus. The work will then be externally moderated by Cambridge. Teachers may not undertake school-based assessment of Coursework without the written approval of Cambridge. This will only be given to teachers who satisfy Cambridge requirements concerning moderation and who have undertaken special training in assessment before entering candidates. Cambridge offers schools in-service training via the Coursework Training Handbook.
- For 0581, a candidate's Coursework grade cannot lower his or her overall result. Candidates entered for Syllabus 0581 are graded first on Components $1+3+5$ or $2+4+6$ and then graded again on Components $1+3$ or $2+4$. If the grade achieved on the aggregate of the two written papers alone is higher then this replaces the result achieved when the Coursework component is included. In effect, no candidate is penalised for taking the Coursework component.

Availability

This syllabus is examined in the May/June examination series and the October/November examination series.

0580 is available to private candidates. 0581 is not available to private candidates.

Combining this with other syllabuses

Candidates can combine these syllabuses in an examination series with any other Cambridge syllabus, except:

- syllabuses with the same title at the same level
- 0607 Cambridge IGCSE International Mathematics

Please note that Cambridge IGCSE, Cambridge International Level 1/Level 2 Certificates and Cambridge O Level syllabuses are at the same level.

3. Syllabus aims and assessment

3.1 Syllabus aims

The aims of the curriculum are the same for all candidates. The aims are set out below and describe the educational purposes of a course in Mathematics for the Cambridge IGCSE examination. They are not listed in order of priority.

The aims are to enable candidates to:

1. develop their mathematical knowledge and oral, written and practical skills in a way which encourages confidence and provides satisfaction and enjoyment;
2. read mathematics, and write and talk about the subject in a variety of ways;
3. develop a feel for number, carry out calculations and understand the significance of the results obtained;
4. apply mathematics in everyday situations and develop an understanding of the part which mathematics plays in the world around them;
5. solve problems, present the solutions clearly, check and interpret the results;
6. develop an understanding of mathematical principles;
7. recognise when and how a situation may be represented mathematically, identify and interpret relevant factors and, where necessary, select an appropriate mathematical method to solve the problem;
8. use mathematics as a means of communication with emphasis on the use of clear expression;
9. develop an ability to apply mathematics in other subjects, particularly science and technology;
10. develop the abilities to reason logically, to classify, to generalise and to prove;
11. appreciate patterns and relationships in mathematics;
12. produce and appreciate imaginative and creative work arising from mathematical ideas;
13. develop their mathematical abilities by considering problems and conducting individual and co-operative enquiry and experiment, including extended pieces of work of a practical and investigative kind;
14. appreciate the interdependence of different branches of mathematics;
15. acquire a foundation appropriate to their further study of mathematics and of other disciplines.

3.2 Assessment objectives and their weighting in the exam papers

The two assessment objectives in Mathematics are:

A Mathematical techniques

B Applying mathematical techniques to solve problems

A description of each assessment objective follows.

A Mathematical techniques

Candidates should be able to:

1. organise, interpret and present information accurately in written, tabular, graphical and diagrammatic forms;
2. perform calculations by suitable methods;
3. use an electronic calculator and also perform some straightforward calculations without a calculator;
4. understand systems of measurement in everyday use and make use of them in the solution of problems;
5. estimate, approximate and work to degrees of accuracy appropriate to the context and convert between equivalent numerical forms;
6. use mathematical and other instruments to measure and to draw to an acceptable degree of accuracy;
7. interpret, transform and make appropriate use of mathematical statements expressed in words or symbols;
8. recognise and use spatial relationships in two and three dimensions, particularly in solving problems;
9. recall, apply and interpret mathematical knowledge in the context of everyday situations.

B Applying mathematical techniques to solve problems

In questions which are set in context and/or which require a sequence of steps to solve, candidates should be able to:
10. make logical deductions from given mathematical data;
11. recognise patterns and structures in a variety of situations, and form generalisations;
12. respond to a problem relating to a relatively unstructured situation by translating it into an appropriately structured form;
13. analyse a problem, select a suitable strategy and apply an appropriate technique to obtain its solution;
14. apply combinations of mathematical skills and techniques in problem solving;
15. set out mathematical work, including the solution of problems, in a logical and clear form using appropriate symbols and terminology.

Weighting of assessment objectives

The relationship between the assessment objectives and the scheme of assessment is set out in the tables below.

	Paper 1 (marks)	Paper 2 (marks)	Paper 3 (marks)	Paper 4 (marks)
A: Mathematical techniques	$42-48$	$28-35$	$78-88$	$52-65$
B: Applying mathematical techniques to solve problems	$8-14$	$35-42$	$16-26$	$65-78$

	Core assessment	Extended assessment
A: Mathematical techniques	$75-85 \%$	$40-50 \%$
B: Applying mathematical techniques to solve problems	$15-25 \%$	$50-60 \%$

The relationship between the main topic areas of Mathematics and the assessment is set out in the table below.

	Number	Algebra	 shape	Statistics
Core (Papers 1 \& 3)	$30-35 \%$	$20-25 \%$	$30-35 \%$	$10-15 \%$
Extended (Papers 2 \& 4)	$15-20 \%$	$35-40 \%$	$30-35 \%$	$10-15 \%$

4. Curriculum content

Candidates may follow either the Core curriculum only or the Extended curriculum which involves both the Core and Supplement. Candidates aiming for Grades $A^{*}-C$ should follow the Extended Curriculum.

Centres are reminded that the study of mathematics offers opportunities for the use of ICT, particularly spreadsheets and graph-drawing packages. For example, spreadsheets may be used in the work on Percentages (section 11), Personal and household finance (section 15), Algebraic formulae (section 20), Statistics (section 33), etc. Graph-drawing packages may be used in the work on Graphs in practical situations (section 17), Graphs of functions (section 18), Statistics (section 33), etc. It is important to note that use or knowledge of ICT will not be assessed in the examination papers.

Centres are also reminded that, although use of an electronic calculator is permitted on all examination papers, candidates should develop a full range of mental and non-calculator skills during the course of study. Questions demonstrating the mastery of such skills may be asked in the examination.

As well as demonstrating skill in the following techniques, candidates will be expected to apply them in the solution of problems.

1. Number, set notation and language

Core

Identify and use natural numbers, integers (positive, negative and zero), prime numbers, square numbers, common factors and common multiples, rational and irrational numbers (e.g. $\pi, \sqrt{2}$), real numbers; continue a given number sequence; recognise patterns in sequences and relationships between different sequences, generalise to simple algebraic statements (including expressions for the nth term) relating to such sequences.

Supplement

Use language, notation and Venn diagrams to describe sets and represent relationships between sets as follows:
Definition of sets, e.g.
$A=\{x: x$ is a natural number $\}$
$B=\{(x, y): y=m x+c\}$
$C=\{x: a \leqslant x \leqslant b\}$
$D=\{a, b, c, \ldots\}$

Notation	
Number of elements in set A	$\mathrm{n}(A)$
" \ldots is an element of..."	\in
" \ldots is not an element of..."	\notin
Complement of set A	A^{\prime}
The empty set	\varnothing
Universal set	\mathscr{E}
A is a subset of B	$A \subseteq B$
A is a proper subset of B	$A \subset B$
A is not a subset of B	$A \nsubseteq B$
A is not a proper subset of B	$A \not \subset B$
Union of A and B	$A \cup B$
Intersection of A and B	$A \cap B$

Number of elements in set $A \quad n(A)$
"...is an element of..." \in
"...is not an element of..." \notin
Complement of set $A \quad A^{\prime}$
The empty set $\quad \varnothing$
Universal set \mathscr{E}
A is a subset of $B \quad A \subseteq B$
A is a proper subset of $B \quad A \subset B$
A is not a subset of $B \quad A \nsubseteq B$
A is not a proper subset of $B \quad A \not \subset B$
Union of A and $B \quad A \cup B$
Intersection of A and $B \quad A \cap B$

2. Squares and cubes

Core

Calculate squares, square roots, cubes and cube roots of numbers.

3. Directed numbers

Core

Use directed numbers in practical situations
(e.g. temperature change, flood levels).

4. Vulgar and decimal fractions and percentages

Core

Use the language and notation of simple vulgar and decimal fractions and percentages in appropriate contexts; recognise equivalence and convert between these forms.

5. Ordering

Core

Order quantities by magnitude and demonstrate
familiarity with the symbols $=, \neq,>,<, \geqslant, \leqslant$

6. Standard form

Core

Use the standard form $A \times 10^{n}$ where n is a positive or negative integer, and $1 \leqslant A<10$

7. The four rules

Core

Use the four rules for calculations with whole numbers, decimal fractions and vulgar (and mixed) fractions, including correct ordering of operations and use of brackets.

8. Estimation

Core

Make estimates of numbers, quantities and lengths, give approximations to specified numbers of significant figures and decimal places and round off answers to reasonable accuracy in the context of a given problem.

9. Limits of accuracy

Core

Give appropriate upper and lower bounds for data given to a specified accuracy (e.g. measured lengths).

Supplement

Obtain appropriate upper and lower bounds to solutions of simple problems (e.g. the calculation of the perimeter or the area of a rectangle) given data to a specified accuracy.

10. Ratio, proportion, rate

Core

Demonstrate an understanding of the elementary ideas and notation of ratio, direct and inverse proportion and common measures of rate; divide a quantity in a given ratio; use scales in practical situations; calculate average speed.

Supplement

Express direct and inverse variation in algebraic terms and use this form of expression to find unknown quantities; increase and decrease a quantity by a given ratio.

11. Percentages

Core

Calculate a given percentage of a quantity; express one quantity as a percentage of another; calculate percentage increase or decrease.

Supplement

Carry out calculations involving reverse percentages, e.g. finding the cost price given the selling price and the percentage profit.

12. Use of an electronic calculator

Core

Use an electronic calculator efficiently; apply appropriate checks of accuracy.

13. Measures

Core

Use current units of mass, length, area, volume and capacity in practical situations and express quantities in terms of larger or smaller units.

14. Time

Core

Calculate times in terms of the 24-hour and 12-hour clock; read clocks, dials and timetables.

15. Money

Core

Calculate using money and convert from one currency to another.

16. Personal and household finance

Core

Use given data to solve problems on personal and household finance involving earnings, simple interest and compound interest (knowledge of compound interest formula is not required), discount, profit and loss; extract data from tables and charts.

17. Graphs in practical situations

Core

Demonstrate familiarity with Cartesian co-ordinates in two dimensions, interpret and use graphs in practical situations including travel graphs and conversion graphs, draw graphs from given data.

Supplement

Apply the idea of rate of change to easy kinematics involving distance-time and speed-time graphs, acceleration and deceleration; calculate distance travelled as area under a linear speed-time graph.

18. Graphs of functions

Core

Construct tables of values for functions of the form $a x+b, \pm x^{2}+a x+b, a / x(x \neq 0)$ where a and b are integral constants; draw and interpret such graphs; find the gradient of a straight line graph; solve linear and quadratic equations approximately by graphical methods.

Supplement

Construct tables of values and draw graphs for functions of the form $a x^{n}$ where a is a rational constant and $n=-2,-1,0,1,2,3$ and simple sums of not more than three of these and for functions of the form a^{x} where a is a positive integer; estimate gradients of curves by drawing tangents; solve associated equations approximately by graphical methods.

19. Straight line graphs

Core

Interpret and obtain the equation of a straight line graph in the form $y=m x+c$; determine the equation of a straight line parallel to a given line.

20. Algebraic representation and formulae

Core

Use letters to express generalised numbers and express basic arithmetic processes algebraically, substitute numbers for words and letters in formulae; transform simple formulae; construct simple expressions and set up simple equations.

21. Algebraic manipulation

Core

Manipulate directed numbers; use brackets and extract common factors.

Supplement

Calculate the gradient of a straight line from the co-ordinates of two points on it; calculate the length and the co-ordinates of the midpoint of a straight line segment from the co-ordinates of its end points.

Supplement

Construct and transform more complicated formulae and equations.

Supplement

Expand products of algebraic expressions; factorise where possible expressions of the form $a x+b x+k a y+k b y, a^{2} x^{2}-b^{2} y^{2} ; a^{2}+2 a b+b^{2} ;$ $a x^{2}+b x+c$ manipulate algebraic fractions, e.g. $\frac{x}{3}+\frac{x-4}{2}$, $\frac{2 x}{3}-\frac{3(x-5)}{2}, \frac{3 a}{4} \times \frac{5 a b}{3}, \frac{3 a}{4}-\frac{9 a}{10}, \frac{1}{x-2}+\frac{2}{x-3}$
factorise and simplify expressions such as $\frac{x^{2}-2 x}{x^{2}-5 x+6}$
22. Functions

Supplement

Use function notation, e.g. $f(x)=3 x-5$,
$\mathrm{f}: x \mapsto 3 x-5$ to describe simple functions, and the notation $f^{-1}(x)$ to describe their inverses; form composite functions as defined by $g f(x)=g(f(x))$

23. Indices

Core

Use and interpret positive, negative and zero indices.

Supplement

Use and interpret fractional indices, e.g. solve $32^{x}=2$

24. Solutions of equations and inequalities

Core

Solve simple linear equations in one unknown; solve simultaneous linear equations in two unknowns.

Supplement

Solve quadratic equations by factorisation, completing the square or by use of the formula; solve simple linear inequalities.
25. Linear programming

Supplement

Represent inequalities graphically and use this representation in the solution of simple linear programming problems (the conventions of using broken lines for strict inequalities and shading unwanted regions will be expected).

26. Geometrical terms and relationships

Core

Use and interpret the geometrical terms: point, line, parallel, bearing, right angle, acute, obtuse and reflex angles, perpendicular, similarity, congruence; use and interpret vocabulary of triangles, quadrilaterals, circles, polygons and simple solid figures including nets.

Supplement

Use the relationships between areas of similar triangles, with corresponding results for similar figures and extension to volumes and surface areas of similar solids.

28. Symmetry

Core

Recognise rotational and line symmetry (including order of rotational symmetry) in two dimensions and properties of triangles, quadrilaterals and circles directly related to their symmetries.

Supplement

Recognise symmetry properties of the prism (including cylinder) and the pyramid (including cone); use the following symmetry properties of circles:
(a) equal chords are equidistant from the centre
(b) the perpendicular bisector of a chord passes through the centre
(c) tangents from an external point are equal in length.

29. Angle properties

Core

Calculate unknown angles using the following geometrical properties:
(a) angles at a point
(b) angles at a point on a straight line and intersecting straight lines
(c) angles formed within parallel lines
(d) angle properties of triangles and quadrilaterals
(e) angle properties of regular polygons
(f) angle in a semi-circle
(g) angle between tangent and radius of a circle.

Supplement

Use in addition the following geometrical properties:
(a) angle properties of irregular polygons
(b) angle at the centre of a circle is twice the angle at the circumference
(c) angles in the same segment are equal
(d) angles in opposite segments are supplementary; cyclic quadrilaterals.

30. Locus

Core

Use the following loci and the method of intersecting loci for sets of points in two dimensions:
(a) which are at a given distance from a given point
(b) which are at a given distance from a given straight line
(c) which are equidistant from two given points
(d) which are equidistant from two given intersecting straight lines.

31. Mensuration

Core

Carry out calculations involving the perimeter and area of a rectangle and triangle, the circumference and area of a circle, the area of a parallelogram and a trapezium, the volume of a cuboid, prism and cylinder and the surface area of a cuboid and a cylinder.

Supplement

Solve problems involving the arc length and sector area as fractions of the circumference and area of a circle, the surface area and volume of a sphere, pyramid and cone (given formulae for the sphere, pyramid and cone).

32. Trigonometry

Core

Interpret and use three-figure bearings measured clockwise from the North (i.e. $000^{\circ}-360^{\circ}$); apply Pythagoras' theorem and the sine, cosine and tangent ratios for acute angles to the calculation of a side or of an angle of a right-angled triangle (angles will be quoted in, and answers required in, degrees and decimals to one decimal place).

Supplement

Solve trigonometrical problems in two dimensions involving angles of elevation and depression; extend sine and cosine values to angles between 90° and 180°; solve problems using the sine and cosine rules for any triangle and the formula area of triangle $=\frac{1}{2} a b \sin C$, solve simple trigonometrical problems in three dimensions including angle between a line and a plane.

33. Statistics

Core

Collect, classify and tabulate statistical data; read, interpret and draw simple inferences from tables and statistical diagrams; construct and use bar charts, pie charts, pictograms, simple frequency distributions, histograms with equal intervals and scatter diagrams (including drawing a line of best fit by eye); understand what is meant by positive, negative and zero correlation; calculate the mean, median and mode for individual and discrete data and distinguish between the purposes for which they are used; calculate the range.

34. Probability

Core

Calculate the probability of a single event as either a fraction or a decimal (not a ratio); understand and use the probability scale from 0 to 1 ; understand that: the probability of an event occurring $=1$ - the probability of the event not occurring; understand probability in practice, e.g. relative frequency.

Supplement

Calculate the probability of simple combined events, using possibility diagrams and tree diagrams where appropriate (in possibility diagrams outcomes will be represented by points on a grid and in tree diagrams outcomes will be written at the end of branches and probabilities by the side of the branches).

35. Vectors in two dimensions

Core

Describe a translation by using a vector
represented by e.g. $\binom{x}{y}, \overrightarrow{A B}$ or \mathbf{a};
add and subtract vectors; multiply a vector by a scalar.

Supplement

Calculate the magnitude of a vector $\binom{x}{y}$ as $\sqrt{x^{2}+y^{2}}$.
(Vectors will be printed as $\overrightarrow{A B}$ or a and their magnitudes denoted by modulus signs, e.g. $|\overrightarrow{A B}|$ or $|\mathbf{a}|$. In their answers to questions candidates are expected to indicate \mathbf{a} in some definite way, e.g. by an arrow or by underlining, thus $\overrightarrow{A B}$ or a) Represent vectors by directed line segments; use the sum and difference of two vectors to express given vectors in terms of two coplanar vectors; use position vectors
36. Matrices

Supplement

Display information in the form of a matrix of any order; calculate the sum and product (where appropriate) of two matrices; calculate the product of a matrix and a scalar quantity; use the algebra of 2×2 matrices including the zero and identity 2×2 matrices; calculate the determinant and inverse \mathbf{A}^{-1} of a non-singular matrix \mathbf{A}

37. Transformations

Core

Reflect simple plane figures in horizontal or vertical lines; rotate simple plane figures about the origin, vertices or midpoints of edges of the figures, through multiples of 90°; construct given translations and enlargements of simple plane figures; recognise and describe reflections, rotations, translations and enlargements.

Supplement

Use the following transformations of the plane: reflection (M); rotation (R); translation (T); enlargement (E); shear (H); stretch (S) and their combinations (if $\mathrm{M}(a)=b$ and $\mathrm{R}(b)=c$ the notation $\mathrm{RM}(a)=c$ will be used; invariants under these transformations may be assumed.)
Identify and give precise descriptions of transformations connecting given figures; describe transformations using co-ordinates and matrices (singular matrices are excluded).

4.1 Grade descriptions

Grade Descriptions are provided to give a general indication of the standards of achievement likely to have been shown by candidates awarded particular grades. The grade awarded will depend in practice upon the extent to which the candidate has met the assessment objectives overall. Shortcomings in some aspects of a candidate's performance in the examination may be balanced by a better performance in others.

Grade F

At this level, candidates are expected to identify and obtain necessary information. They would be expected to recognise if their results to problems are sensible. An understanding of simple situations should enable candidates to describe them, using symbols, words and diagrams. They draw simple, basic conclusions with explanations where appropriate.

- With an understanding of place value, candidates should be able to perform the four rules on positive integers and decimal fractions (one operation only) using a calculator where necessary. They should be able to convert between fractions, decimals and percentages for the purpose of comparing quantities between 0 and 1 in a variety of forms, and reduce a fraction to its simplest form. Candidates should appreciate the idea of direct proportion and the solution of simple problems involving ratio should be expected. Basic knowledge of percentage is needed to apply to simple problems involving percentage parts of quantities. They need to understand and apply metric units of length, mass and capacity, together with conversion between units in these areas of measure. The ability to recognise and continue a straightforward pattern in sequences and understand the terms multiples, factors and squares is needed as a foundation to higher grade levels of applications in the areas of number and algebra.
- At this level, the algebra is very basic involving the construction of simple algebraic expressions, substituting numbers for letters and evaluating simple formulae. Candidates should appreciate how a simple linear equation can represent a practical situation and be able to solve such equations.
- Knowledge of names and recognition of simple plane figures and common solids is basic to an understanding of shape and space. This will be applied to the perimeter and area of a rectangle and other rectilinear shapes. The skill of using geometrical instruments, ruler, protractor and compasses is required for applying to measuring lengths and angles and drawing a triangle given three sides.
- Candidates should be familiar with reading data from a variety of sources and be able to extract data from them, in particular timetables. The tabulation of the data is expected in order to form frequency tables and draw a bar chart. They will need the skill of plotting given points on a graph and reading a travel graph. From a set of numbers they should be able to calculate the mean.

Grade C

At this level, candidates are expected to show some insight into the mathematical structures of problems, which enables them to justify generalisations, arguments or solutions. Mathematical presentation and stages of derivations should be more extensive in order to generate fuller solutions. They should appreciate the difference between mathematical explanation and experimental evidence.

- Candidates should now apply the four rules of number to positive and negative integers, fractions and decimal fractions, in order to solve problems. Percentage should be extended to problems involving calculating one quantity as a percentage of another and its application to percentage change. Calculations would now involve several operations and allow candidates to demonstrate fluent and efficient use of calculators, as well as giving reasonable approximations. The relationship between decimal and standard form of a number should be appreciated and applied to positive and negative powers of 10. They should be familiar with the differences between simple and compound interest and apply this to calculating both.
- Candidates now need to extend their basic knowledge of sequences to recognise, and in simple cases formulate, rules for generating a pattern or sequence. While extending the level of difficulty of solving linear equations by involving appropriate algebraic manipulation, candidates are also expected to solve simple simultaneous equations in two unknowns. Work with formulae extends into harder substitution and evaluating the remaining term, as well as transforming simple formulae. The knowledge of basic algebra is extended to the use of brackets and common factor factorisation. On graph work candidates should be able to plot points from given values and use them to draw and interpret graphs in practical situations, including travel and conversion graphs and algebraic graphs of linear and quadratic functions.
- Candidates are expected to extend perimeter and area beyond rectilinear shapes to circles. They are expected to appreciate and use area and volume units in relation to finding the volume and surface area of a prism and cylinder. The basic construction work, with appropriate geometrical instruments, should now be extended and applied to accurate scale diagrams to solve a two-dimensional problem. Pythagoras theorem and trigonometry of right-angled triangles should be understood and applied to solving, by calculation, problems in a variety of contexts. The calculation of angles in a variety of geometrical figures, including polygons and to some extent circles should be expected from straightforward diagrams.
- Candidates should be able to use a frequency table to construct a pie chart. They need to understand and construct a scatter diagram and apply this to a judgement of the correlation existing between two quantities.

Grade A

At this level, candidates should make clear, concise and accurate statements, demonstrating ease and confidence in the use of symbolic forms and accuracy or arithmetic manipulation. They should apply the mathematics they know in familiar and unfamiliar contexts.

- Candidates are expected to apply their knowledge of rounding to determining the bounds of intervals, which may follow calculations of, for example, areas. They should understand and use direct and inverse proportion. A further understanding of percentages should be evident by relating percentage change to change to a multiplying factor and vice versa, e.g. multiplication by 1.03 results in a 3% increase.
- Knowledge of the four rules for fractions should be applied to the simplification of algebraic fractions. Building on their knowledge of algebraic manipulation candidates should be able to manipulate linear, simultaneous and quadratic equations. They should be able to use positive, negative and fractional indices in both numerical and algebraic work, and interpret the description of a situation in terms of algebraic formulae and equations. Their knowledge of graphs of algebraic functions should be extended to the intersections and gradients of these graphs.
- The basic knowledge of scale factors should be extended to two and three dimensions and applied to calculating lengths, areas and volumes between actual values and scale models. The basic right-handed trigonometry knowledge should be applied to three-dimensional situations as well as being extended to an understanding of and solving problems on non-right angled triangles.
- At this level, candidates should be able to process data, discriminating between necessary and redundant information. The basic work on graphs in practical situations should be extended to making quantitative and qualitative deductions from distance/time and speed/time graphs.

5. Coursework: guidance for centres

The Coursework component provides candidates with an additional opportunity to show their ability in Mathematics. This opportunity relates to all abilities covered by the Assessment Objectives, but especially to the last five, where an extended piece of work can demonstrate ability more fully than an answer to a written question.

Coursework should aid development of the ability

- to solve problems,
- to use mathematics in a practical way,
- to work independently,
- to apply mathematics across the curriculum,
and if suitable assignments are selected, it should enhance interest in, and enjoyment of, the subject.
Coursework assignments should form an integral part of both Cambridge IGCSE Mathematics courses: whether some of this Coursework should be submitted for assessment (syllabus 0581), or not (syllabus 0580), is a matter for the teacher and the candidate to decide. A candidate's Coursework grade cannot lower his or her overall result.

5.1 Procedure

(a) Candidates should submit one Coursework assignment.
(b) Coursework can be undertaken in class, or in the candidate's own time. If the latter, the teacher must be convinced that the piece is the candidate's own unaided work, and must sign a statement to that effect (see also Section 5.4 Controlled Elements).
(c) A good Coursework assignment is normally between 8 and 15 sides of A4 paper in length. These figures are only for guidance; some projects may need to be longer in order to present all the findings properly, and some investigations might be shorter although all steps should be shown.
(d) The time spent on a Coursework assignment will vary, according to the candidate. As a rough guide, between 10 and 20 hours is reasonable.

5.2 Selection of Coursework assignments

(a) The topics for the Coursework assignments may be selected by the teacher, or (with guidance) by the candidates themselves.
(b) Since individual input is essential for high marks, candidates should work on different topics. However, it is possible for the whole class to work on the same topic, provided that account is taken of this in the final assessment.
(c) Teachers should ensure that each topic corresponds to the ability of the candidate concerned. Topics should not restrict the candidate and should enable them to show evidence of attainment at the highest level of which they are capable. However, topics should not be chosen which are clearly beyond the candidate's ability.
(d) The degree of open-endedness of each topic is at the discretion of the teacher. However, each topic selected should be capable of extension, or development beyond any routine solution, so as to give full rein to the more imaginative candidate.
(e) The principal consideration in selecting a topic should be the potential for mathematical activity. With that proviso, originality of topics should be encouraged.
(f) Some candidates may wish to use a computer at various stages of their Coursework assignment. This should be encouraged, but they must realise that work will be assessed on personal input, and not what the computer does for them. Software sources should be acknowledged.

5.3 Suggested topics for Coursework assignments

Good mathematical assignments can be carried out in many different areas. It is an advantage if a suitable area can be found which matches the candidate's own interests.

Some suggestions for Coursework assignments are:

A mathematical investigation

There are many good investigations available from various sources: books, the Internet, etc. The objective is to obtain a mathematical generalisation for a given situation.

At the highest level, candidates should consider a complex problem which involves the co-ordination of three features or variables.

An application of mathematics

Packaging - how can four tennis balls be packaged so that the least area of card is used?
Designing a swimming pool
Statistical analysis of a survey conducted by the candidate
Simulation games
Surveying - taking measurements and producing a scale drawing or model

At the highest level, candidates should consider a complex problem which involves mathematics at grade A. (See the section on grade descriptions.)

Teachers should discuss assignments with the candidates to ensure that they have understood what is required and know how to start. Thereafter, teachers should only give hints if the candidate is completely stuck.

Computer software packages may be used to enhance presentation, perform repetitive calculations or draw graphs.

5.4 Controlled elements

(a) The controlled element is included to assist the teacher in checking
(i) the authenticity of the candidate's work,
(ii) the extent of the candidate's learning of Mathematics, and its retention,
(iii) the depth of understanding of the Mathematics involved,
(iv) the ability to apply the learning to a different situation.
(b) The element must be carried out individually by the candidates under controlled conditions, but may take any appropriate form, provided that the results are available for moderation, e.g. a timed or untimed written test,
an oral exchange between the candidate and the teacher,
a parallel investigation or piece of work,
a parallel piece of practical work, or practical test including a record of the results, a written summary or account.

6. Coursework assessment criteria

6.1 Scheme of assessment for Coursework assignments

(a) The whole range of marks is available at each level. The five classifications each have a maximum of 4 marks, awarded on a five-point scale, $0,1,2,3,4$. For Coursework as a whole, including the controlled element, a maximum of 20 marks is available. Participating schools should use the forms at the back of the syllabus on which to enter these marks.
(b) Assignments are part of the learning process for the candidates, and it is expected that they will receive help and advice from their teachers. The marks awarded must reflect the personal contributions of the candidates, including the extent to which they use the advice they receive in the development of the assignments.
(c) The way in which the accuracy marks are allocated will vary from one assignment to another. Numerical accuracy, accuracy of manipulation in algebra, accuracy in the use of instruments, care in the construction of graphs and use of the correct units in measuring, are all aspects which may need consideration in particular assignments.
(d) If a candidate changes his or her level of entry during the course, Coursework already completed and assessed by the teacher will have to be reassessed according to the new entry option before moderation. A candidate being re-entered at the higher level (Extended curriculum) must be given the opportunity to extend any assignment already completed before it is re-assessed.
(e) The use of ICT is to be encouraged; however, teachers should not give credit to candidates for the skills needed to use a computer software package. For example, if data is displayed graphically by a spreadsheet, then credit may be given for selecting the most appropriate graph to draw and for its interpretation.
(f) Further information about the assessment of Coursework is given in the Coursework Training Handbook and at training sessions.

The following tables contain detailed criteria for the award of marks from 0 to 4 under the five categories of assessment (overall design and strategy, mathematical content, accuracy, clarity of argument and presentation, controlled element). For the Coursework component as a whole, a maximum of 20 marks is available.

Overall design and strategy

Assessment Criteria	Core	Extended
Much help has been received. No apparent attempt has been made to plan the work	0	0
Help has been received from the teacher, the peer group or a prescriptive worksheet. Little independent work has been done. Some attempt has been made to solve the problem, but only at a simple level. The work is poorly organised, showing little overall plan.	1	
Some help has been received from the teacher or the peer group. A strategy has been outlined and an attempt made to follow it.		
A routine approach, with little evidence of the candidate's own ideas being used.	2	
The work has been satisfactorily carried out, with some evidence of forward planning. Appropriate techniques have been used; although some of these may have been suggested by others, the development and use of them is the candidate's own.		3
The work is well planned and organised. The candidate has worked independently, devising and using techniques appropriate to the task. The candidate is aware of the wider implications of the task and has attempted to extend it. The outcome of the task is clearly explained.	4	2
The work is methodical and follows a flexible strategy to cope with unforeseen problems. The candidate has worked independently, the only assistance received being from reference books or by asking questions arising from the candidate's own ideas. The problem is solved, with generalisations where appropriate. The task has been extended and the candidate has demonstrated the wider implications.	4	3

Mathematical content

Assessment Criteria	Core	Extended
Little or no evidence of any mathematical activity. The work is very largely descriptive or pictorial.	0	0
A few concepts and methods relevant to the task have been employed, but in a superficial and repetitive manner.	1	0
A sufficient range of mathematical concepts which meet the basic needs of the task has been employed.		1
More advanced mathematical methods may have been attempted, but not necessarily appropriately or successfully.	2	2
The concepts and methods usually associated with the task have been used, and the candidate has shown competence in using them.	3	2
The candidate has used a wide range of Core syllabus mathematics competently and relevantly, plus some mathematics from beyond the Core syllabus. The candidate has developed the topic mathematically beyond the usual and obvious. Mathematical explanations are concise.	4	3
A substantial amount of work, involving a wide range of mathematical ideas and methods of Extended level standard or beyond. The candidate has employed, relevantly, some concepts and methods not usually associated with the task in hand. Some mathematical originality has been shown.	4	4

Accuracy

N.B. The mark for Accuracy should not normally exceed the mark for Mathematical Content.

Assessment Criteria	Core	Extended
Very few calculations have been carried out, and errors have been made in these. Diagrams and tables are poor and mostly inaccurate.	0	0
Either correct work on limited mathematical content or calculations performed on a range of Core syllabus topics with some errors. Diagrams and tables are adequate, but units are often omitted or incorrect.	1	0
Calculations have been performed on all Core syllabus topics relevant to the task, with only occasional slips. Diagrams are neat and accurate, but routine; and tables contain information with few errors. The candidate has shown some idea of the appropriate degree of accuracy for the data used. Units are used correctly.	2	1
All the measurements and calculations associated with the task have been completed accurately. The candidate has shown an understanding of magnitude and degree of accuracy when making measurements or performing calculations. Accurate diagrams are included, which support the written work.	3	2
Careful, accurate and relevant work throughout. This includes, where appropriate, computation, manipulation, construction and measurement with correct units. Accurate diagrams are included which positively enhance the work, and support the development of the argument. The degree of accuracy is always correct and appropriate.	4	3 or 4*

*According to the mark for mathematical content.

Clarity of argument and presentation

Assessment Criteria

Haphazard organisation of work, which is difficult to follow. A series of disconnected short pieces of work. Little or no attempt to summarise the results.	0	0
Poorly presented work, lacking logical development. Undue emphasis is given to minor aspects of the task, whilst important aspects are not given adequate attention. The work is presented in the order in which it happened to be completed; no attempt is made to re-organise it into a logical order.	1	0
Adequate presentation which can be followed with some effort. A reasonable summary of the work completed is given, though with some lack of clarity and/or faults of emphasis. The candidate has made some attempt to organise the work into a logical order.	2	1
A satisfactory standard of presentation has been achieved. The work has been arranged in a logical order. Adequate justification has been given for any generalisations made. The summary is clear, but the candidate has found some difficulty in linking the various different parts of the task together.	3	2
The presentation is clear, using written, diagrammatic and graphical methods as and when appropriate. Conclusions and generalisations are supported by reasoned statements which refer back to results obtained in the main body of the work. Disparate parts of the task have been brought together in a competent summary.	4	3
The work is clearly expressed and easy to follow. Mathematical and written language has been used to present the argument; good use has been made of symbolic, graphical and diagrammatic evidence in support. The summary is clear and concise, with reference to the original aims; there are also good suggestions of ways in which the work might be extended, or applied in other areas.	4	4

Controlled element

Assessment Criteria	Core	Extended
Little or no evidence of understanding the problem. Unable to communicate any sense of having learned something by undertaking the original task.	0	0
Able to reproduce a few of the basic skills associated with the task, but needs considerable prompting to get beyond this.	1	0
Can answer most of the questions correctly in a straightforward test on the project. Can answer questions about the problem and the methods used in its solution.	2	1
Can discuss or write about the problem, in some detail. Shows competence in the mathematical methods used in the work. Little or no evidence of having thought about possible extensions to the work or the application of methods to different situations.	3	2
Can talk or write fluently about the problem and its solution. Has ideas for the extersion of the problem, and the applicability of the methods used in its solution to different situations.	4	3 or 4*

*Dependent on the complexity of the problem and the quality of the ideas.

6.2 Moderation

Internal Moderation

When several teachers in a Centre are involved in internal assessments, arrangements must be made within the Centre for all candidates to be assessed to a common standard. It is essential that within each Centre the marks for each skill assigned within different teaching groups (e.g. different classes) are moderated internally for the whole Centre entry. The Centre assessments will then be subject to external moderation.

External Moderation

External moderation of internal assessment is carried out by Cambridge. Centres must submit candidates' internally assessed marks to Cambridge. The deadlines and methods for submitting internally assessed marks are in the Cambridge Administrative Guide available on our website.

Once Cambridge has received the marks, Cambridge will select a sample of candidates whose work should be submitted for external moderation. Cambridge will communicate the list of candidates to the Centre, and the Centre should despatch the Coursework of these candidates to Cambridge immediately. Individual Candidate Record Cards and Coursework Assessment Summary Forms (copies of which may be found at the back of this syllabus booklet) must be enclosed with the Coursework.

Further information about external moderation may be found in the Cambridge Handbook and the Cambridge Administrative Guide.

MATHEMATICS

Individual Candidate Record Card

IGCSE 2014

Please read the instructions printed overleaf and the General Coursework Regulations before completing this form.

Title(s) of piece(s) of work:				
Classification of Assessment	$(\max 4)$		Mark awarded	
Overall design and strategy	$(\max 4)$			
Mathematical content	$(\max 4)$			
Accuracy				
Clarity of argument and presentation	$(\max 4)$			
Controlled element				

International Examinations
0581/05\&06/CW/S/14

INSTRUCTIONS FOR COMPLETING INDIVIDUAL CANDIDATE RECORD CARDS

1. Complete the information at the head of the form.
2. Mark the item of Coursework for each candidate according to instructions given in the Syllabus and Training Handbook.
3. Enter marks and total marks in the appropriate spaces. Complete any other sections of the form required.
4. The column for teachers' comments is to assist Cambridge's moderation process and should include a reference to the marks awarded. Comments drawing attention to particular features of the work are especially valuable to the Moderator.
5. Ensure that the addition of marks is independently checked.
6. It is essential that the marks of candidates from different teaching groups within each Centre are moderated internally. This means that the marks awarded to all candidates within a Centre must be brought to a common standard by the teacher responsible for co-ordinating the internal assessment (i.e. the internal moderator), and a single valid and reliable set of marks should be produced which reflects the relative attainment of all the candidates in the Coursework component at the Centre.
7. Transfer the marks to the Coursework Assessment Summary Form in accordance with the instructions given on that document.
8. Retain all Individual Candidate Record Cards and Coursework which will be required for external moderation. Further detailed instructions about external moderation will be sent in late March of the year of the June Examination and in early October of the year of the November examination. See also the instructions on the Coursework Assessment Summary Form.

Note: These Record Cards are to be used by teachers only for candidates who have undertaken Coursework as part of their Cambridge IGCSE.

MATHEMATICS

Coursework Assessment Summary Form

 IGCSE 2014Please read the instructions printed overleaf and the General Coursework Regulations before completing this form.

A. INSTRUCTIONS FOR COMPLETING COURSEWORK ASSESSMENT SUMMARY FORMS

1. Complete the information at the head of the form.
2. List the candidates in an order which will allow ease of transfer of information to a computer-printed Coursework mark sheet MS1 at a later stage (i.e. in candidate index number order, where this is known; see item B. 1 below). Show the teaching group or set for each candidate. The initials of the teacher may be used to indicate group or set.
3. Transfer each candidate's marks from his or her Individual Candidate Record Card to this form as follows:
(a) Where there are columns for individual skills or assignments, enter the marks initially awarded (i.e. before internal moderation took place).
(b) In the column headed 'Total Mark', enter the total mark awarded before internal moderation took place.
(c) In the column headed 'Internally Moderated Mark', enter the total mark awarded after internal moderation took place.
4. Both the teacher completing the form and the internal moderator (or moderators) should check the form and complete and sign the bottom portion.

B. PROCEDURES FOR EXTERNAL MODERATION

1. University of Cambridge International Examinations sends a computer-printed Coursework mark sheet MS1 to each centre (in late March for the June examination and in early October for the November examination) showing the names and index numbers of each candidate. Transfer the total internally moderated mark for each candidate from the Coursework Assessment Summary Form to the computer-printed Coursework mark sheet MS1.
2. The top copy of the computer-printed Coursework mark sheet MS1 must be despatched in the specially provided envelope to arrive as soon as possible at Cambridge but no later than 30 April for the June examination and 31 October for the November examination.
3. Cambridge will select a list of candidates whose work is required for external moderation. As soon as this list is received, send the candidates' work with the corresponding Individual Candidate Record Cards, this summary form and the second copy of the computer-printed mark sheet(s) (MS1), to Cambridge. Indicate the candidates who are in the sample by means of an asterisk (*) against the candidates' names overleaf.
4. Cambridge reserves the right to ask for further samples of Coursework.
5. If the Coursework involves three-dimensional work then clear photographs should be submitted in place of the actual models.

8. Appendix B: Additional information

Guided learning hours

Cambridge IGCSE syllabuses are designed on the assumption that candidates have about 130 guided learning hours per subject over the duration of the course. ('Guided learning hours' include direct teaching and any other supervised or directed study time. They do not include private study by the candidate.)

However, this figure is for guidance only, and the number of hours required may vary according to local curricular practice and the candidates' prior experience of the subject.

Recommended prior learning

We recommend that candidates who are beginning this course should have previously studied an appropriate lower secondary Mathematics programme.

Progression

Cambridge IGCSE Certificates are general qualifications that enable candidates to progress either directly to employment, or to proceed to further qualifications.

Candidates who are awarded grades C to A* in Cambridge IGCSE Extended tier Mathematics are well prepared to follow courses leading to Cambridge International AS and A Level Mathematics, or the equivalent.

Component codes

Because of local variations, in some cases component codes will be different in instructions about making entries for examinations and timetables from those printed in this syllabus, but the component names will be unchanged to make identification straightforward.

Grading and reporting

Cambridge IGCSE results are shown by one of the grades A*, A, B, C, D, E, F or G indicating the standard achieved, Grade A* being the highest and Grade G the lowest. 'Ungraded' indicates that the candidate's performance fell short of the standard required for Grade G. 'Ungraded' will be reported on the statement of results but not on the certificate.

Percentage uniform marks are also provided on each candidate's statement of results to supplement their grade for a syllabus. They are determined in this way:

- A candidate who obtains...
... the minimum mark necessary for a Grade A* obtains a percentage uniform mark of 90%.
... the minimum mark necessary for a Grade A obtains a percentage uniform mark of 80%.
... the minimum mark necessary for a Grade B obtains a percentage uniform mark of 70%.
... the minimum mark necessary for a Grade C obtains a percentage uniform mark of 60%.
... the minimum mark necessary for a Grade D obtains a percentage uniform mark of 50%.
... the minimum mark necessary for a Grade E obtains a percentage uniform mark of 40%.
... the minimum mark necessary for a Grade F obtains a percentage uniform mark of 30%.
... the minimum mark necessary for a Grade G obtains a percentage uniform mark of 20%.
... no marks receives a percentage uniform mark of 0%.
Candidates whose mark is none of the above receive a percentage mark in between those stated, according to the position of their mark in relation to the grade 'thresholds' (i.e. the minimum mark for obtaining a grade). For example, a candidate whose mark is halfway between the minimum for a Grade C and the minimum for a Grade D (and whose grade is therefore D) receives a percentage uniform mark of 55%.

The percentage uniform mark is stated at syllabus level only. It is not the same as the 'raw' mark obtained by the candidate, since it depends on the position of the grade thresholds (which may vary from one series to another and from one subject to another) and it has been turned into a percentage.

Abstract

Access Reasonable adjustments are made for disabled candidates in order to enable them to access the assessments and to demonstrate what they know and what they can do. For this reason, very few candidates will have a complete barrier to the assessment. Information on reasonable adjustments is found in the Cambridge Handbook which can be downloaded from the website www.cie.org.uk

Candidates who are unable to access part of the assessment, even after exploring all possibilities through reasonable adjustments, may still be able to receive an award based on the parts of the assessment they have taken.

Support and resources

Copies of syllabuses, the most recent question papers and Principal Examiners' reports for teachers are on the Syllabus and Support Materials CD-ROM, which we send to all Cambridge International Schools. They are also on our public website - go to www.cie.org.uk/igcse. Click the Subjects tab and choose your subject. For resources, click 'Resource List'.

You can use the 'Filter by' list to show all resources or only resources categorised as 'Endorsed by Cambridge'. Endorsed resources are written to align closely with the syllabus they support. They have been through a detailed quality-assurance process. As new resources are published, we review them against the syllabus and publish their details on the relevant resource list section of the website.

Additional syllabus-specific support is available from our secure Teacher Support website
http://teachers.cie.org.uk which is available to teachers at registered Cambridge schools. It provides past question papers and examiner reports on previous examinations, as well as any extra resources such as schemes of work or examples of candidate responses. You can also find a range of subject communities on the Teacher Support website, where Cambridge teachers can share their own materials and join discussion groups.

9. Appendix C: Additional information - Cambridge International Level 1/Level 2 Certificates

Prior learning

Candidates in England who are beginning this course should normally have followed the Key Stage 3 programme of study within the National Curriculum for England.

Other candidates beginning this course should have achieved an equivalent level of general education.

NOF Level

This qualification is approved by Ofqual, the regulatory authority for England, as part of the National Qualifications Framework as a Cambridge International Level 1/Level 2 Certificate.

Candidates who gain grades G to D will have achieved an award at Level 1 of the National Qualifications Framework.

Candidates who gain grades C to A^{*} will have achieved an award at Level 2 of the National Qualifications Framework.

Progression

Cambridge International Level 1/Level 2 Certificates are general qualifications that enable candidates to progress either directly to employment, or to proceed to further qualifications.

This syllabus provides a foundation for further study at Levels 2 and 3 in the National Qualifications Framework, including GCSE, Cambridge International AS and A Level GCE, and Cambridge Pre-U qualifications.

Candidates who are awarded grades C to A^{*} are well prepared to follow courses leading to Level 3 AS and A Level GCE Mathematics, Cambridge Pre-U Mathematics, IB Mathematics or the Cambridge International AS and A Level Mathematics.

Guided learning hours

The number of guided learning hours required for this course is 130 .
Guided learning hours are used to calculate the funding for courses in state schools in England, Wales and Northern Ireland. Outside England, Wales and Northern Ireland, the number of guided learning hours should not be equated to the total number of hours required by candidates to follow the course as the definition makes assumptions about prior learning and does not include some types of learning time.

Overlapping qualifications

Centres in England, Wales and Northern Ireland should be aware that every syllabus is assigned to a national classification code indicating the subject area to which it belongs. Candidates who enter for more than one qualification with the same classification code will have only one grade (the highest) counted for the purpose of the school and college performance tables. Candidates should seek advice from their school on prohibited combinations.

Spiritual, ethical, social, legislative, economic and cultural issues

Spiritual: There is the opportunity for candidates to appreciate the concept of truth in a mathematical context and to gain an insight into how patterns and symmetries rely on underlying mathematical principles.
Moral: Candidates are required to develop logical reasoning, thereby strengthening their abilities to make sound decisions and assess consequences; they will also appreciate the importance of persistence in problem solving.
Ethical: Candidates have the opportunity to develop an appreciation of when teamwork is appropriate and valuable, but also to understand the need to protect the integrity of individual achievement.
Social: There is the opportunity for candidates to work together productively on complex tasks and to appreciate that different members of a team have different skills to offer.
Cultural: Candidates are required to apply mathematics to everyday situations, thereby appreciating its central importance to modern culture; by understanding that many different cultures have contributed to the development of mathematics and that the language of mathematics is universal, candidates have the opportunity to appreciate the inclusive nature of mathematics.

Sustainable development, health and safety considerations and international developments

This syllabus offers opportunities to develop ideas on sustainable development and environmental issues and the international dimension.

- Sustainable development and environmental issues

Issues can be raised and addressed by questions set in context (e.g. pie charts; bar charts; optimising resources).

- The International dimension

Questions are set using varied international contexts (maps; currencies; journeys) and with cultural sensitivity.

Avoidance of bias

Cambridge has taken great care in the preparation of this syllabus and assessment materials to avoid bias of any kind.

Language

This syllabus and the associated assessment materials are available in English only.

Access

Reasonable adjustments are made for disabled candidates in order to enable them to access the assessments and to demonstrate what they know and what they can do. For this reason, very few candidates will have a complete barrier to the assessment. Information on reasonable adjustments is found in the Cambridge Handbook which can be downloaded from the website www.cie.org.uk

Candidates who are unable to access part of the assessment, even after exploring all possibilities through reasonable adjustments, may still be able to receive an award based on the parts of the assessment they have taken.

Key Skills

The development of the Key Skills of application of number, communication, and information technology, along with the wider Key Skills of improving your own learning and performance, working with others and problem solving can enhance teaching and learning strategies and motivate students towards learning independently.

This syllabus will provide opportunities to develop the key skills of

- application of number
- communication
- information technology
- improving own learning and performance
- working with others
- problem solving.

The separately certificated Key Skills qualification recognises achievement in

- application of number
- communication
- information technology.

Further information on Key Skills can be found on the Ofqual website (www.ofqual.gov.uk).

Support and resources

Copies of syllabuses, the most recent question papers and Principal Examiners' reports for teachers are on the Syllabus and Support Materials CD-ROM, which we send to all Cambridge International Schools. They are also on our public website - go to www.cie.org.uk/igcse. Click the Subjects tab and choose your subject. For resources, click 'Resource List'.

You can use the 'Filter by' list to show all resources or only resources categorised as 'Endorsed by Cambridge'. Endorsed resources are written to align closely with the syllabus they support. They have been through a detailed quality-assurance process. As new resources are published, we review them against the syllabus and publish their details on the relevant resource list section of the website.

Additional syllabus-specific support is available from our secure Teacher Support website
http://teachers.cie.org.uk which is available to teachers at registered Cambridge schools. It provides past question papers and examiner reports on previous examinations, as well as any extra resources such as schemes of work or examples of candidate responses. You can also find a range of subject communities on the Teacher Support website, where Cambridge teachers can share their own materials and join discussion groups.

University of Cambridge International Examinations 1 Hills Road, Cambridge, CB1 2EU, United Kingdom Tel: +44 (0)1223553554 Fax: +44 (0)1223 553558 Email: international@cie.org.uk www.cie.org.uk
© IGCSE is the registered trademark of University of Cambridge International Examinations
© University of Cambridge International Examinations 2011

[^0]: *This syllabus is accredited for use in England, Wales and Northern Ireland as a Cambridge International Level $1 /$ Level 2 Certificate.

[^1]: † Candidates who enter for the accredited version of this syllabus may only enter for Mathematics (without coursework)

