Question 1

(a) Write down the value of $\tan 63.5^{\circ}$, correct to three decimal places.
Answer (a)
(b) Write down the angle whose cosine is 0.25 , correct to the nearest tenth of a degree.

> Answer (b)

Question 2

In the diagram the lines $P Q$ and $R S$ are parallel.
Calculate the values of t, u and v.

$$
\begin{aligned}
& \text { Answert }= \\
& u= \\
& v=
\end{aligned}
$$

Question 3

The area of the square is $144 \mathrm{~cm}^{2}$.
Calculate the area of the circle.
[For π, use either your calculator value or 3.142.]

Answer
cm^{2}
[3]

Question 4

NOT TO SCALE

The diagram shows a triangular prism of length 4 cm . The cross-section is an equilateral triangle of side 3 cm .
Draw an accurate net of the prism.

Question 5

The centre of Zurich (Z) is 35 kilometres north of the centre of Lucerne (L). The bearing of Z from L is 030°.
(a) Calculate the distance that Z is east of L.
Answer (a) ... km [2]
(b) Calculate the bearing of L from Z.

Question 6

Diagram 1

Diagram 2

A square card (Diagram 1) has sides of length 11 cm .
(a) Write down the area of the card.

> Answer (a) . cm^{2}
(b) Four equal squares, each with sides of length 2 cm , are cut from the corners of the square card, as shown in Diagram 2.
Work out the area of card remaining.

$$
\text { Answer }(b) \text {...m² }
$$

(c) The card is now folded along the broken lines to make a box without a lid. Work out the volume of the box.

> Answer (c) cm^{3}

Question 7

In triangle $A B C, A B=3 \mathrm{~cm}, B C=7 \mathrm{~cm}, A C=8 \mathrm{~cm}$ and angle $A=60^{\circ}$.
$B D$ is perpendicular to $A C$.
Calculate
(a) the length of $A D$,

Answer (a) $A D=$
cm
[2]
(b) the length of $D C$,

Answer (b) $D C=$ cm
(c) the size of angle C.

Answer (c) angle $C=$
[2]

Question 8

(a) A square has sides of length 9 cm .
(i) Write down its area.

Answer (a)(i) \qquad cm^{2}
(ii) Write down its perimeter.

Answer (a)(ii) .cm
(iii) Use Pythagoras' Theorem to calculate the length of a diagonal of the square. Give your answer correct to two decimal places.

> Answer (a)(iii)
\qquad .cm
(b)

NOT TO
SCALE

The diagram shows a rhombus with sides of length 9 cm . Angle $B A D=55^{\circ}$.
Calculate
(i) h, the height of the rombus,

Answer (b)(i) $h=$ cm
(ii) the area of the rhombus.

Answer (b)(ii) cm^{2}

Question 9

The vertices of a regular pentagon $A B C D E$ lie on the circumference of a circle, centre O. M is the mid-point of $D E$.
(a) Explain why angle $M O E=36^{\circ}$.

Answer (a) \qquad
\qquad
(b) Find (i) angle $O E D$,

Answer (b)(i) angle $O E D=$
(ii) angle $D E A$.

$$
\begin{equation*}
\text { Answer }(b) \text { (ii) angle } D E A= \tag{1}
\end{equation*}
$$

(c) The length of $O E$ is 9.7 cm .

Calculate the length of (i) $M E$,
Answer (c)(i).
cm
(ii) a side of the pentagon.

Answer (c)(ii) cm

Question 9

(d) Calculate the area of (i) triangle $O D E$,

> Answer(d)(i)
> cm^{2}
[3]
(ii) the pentagon.

Answer(d)(ii)
cm^{2}
[1]
(e) Calculate the area of the circle. (For π, use either your calculator value or 3.142.)

Answer (e) cm^{2}
[2]
(f) Calculate the shaded area, giving your answer to the nearest square centimetre.

Answer (f)
cm^{2}
[2]

Question 10

(a) Calculate the circumference of a circle, radius 6 cm . [For π, use either your calculator value or 3.142.]

Answer (a) \qquad cm
(b)

The diagram shows a cylinder of radius 6 cm and height 11 cm .
Use your answer to part (a) to calculate the eurved surface area of the cylinder.

QUESTION	ANSWER	MARK	
1 (a)	2.006	1	Correct answer only
(b)	75.5	1	Correct answer only
2	$t=61 \quad u=35 \quad v=96$	1, 1, 1	Correct answers only
3	113	3	Accept 113.0973355 or 113.112 or 113.04 (B1) for radius $=6$ seen or implied (M1) for formula $\pi \times$ ('his' radius) 2 (SC2) for 452 - candidate has calculated $\pi \times 12^{2}$
4		3	(B1) three rectangles and two triangles (B1) three accurate rectangles with sides 3 ± 0.1 by $4 \pm 0.1 \mathrm{~cm}$ (B1) two accurate equilateral triangles with sides $3 \pm 0.1 \mathrm{~cm}$
5 (a)	20.2	2	(M1) for 35 xtan 30 or equivalent longer method
(b)	210°	2	(B1) for $180+30$
6 (a)	121	1	
(b)	105	1	
(c)	98	2	(M1) for $(11-4) \times(11-4) \times 2$
$7 \quad$ (a)	1.5	2	(M1) for $3 x \cos 60$ seen or equivalent longer method
(b)	6.5	1	\checkmark award (B1) for $8-(\mathrm{a})$
(c)	21.8°	2	$\sqrt{ }$ award (M1) for $\cos ^{-1}((b) \div 7)$ or $\cos C=(b) \div 7$ or equivalent longer method
8 (a) (i)	81	1	If no marks earned, award (SC1) for correct area and
(a)(ii)	36	1	
(a)(iii)	12.73	3	(SC2) for correct answer but not given to 2 decimal places (M1) for $\sqrt{9^{2}+9^{2}}$ or equivalent
(b)(i)	7.37(...)	2	(M1) for $\frac{h}{9}=\sin 55^{\circ}$ or $h^{2}+\left(9 \cos 55^{\circ}\right)^{2}=9^{2}$ or equivalent
(b)(ii)	66.3 to 66.4	1	$\sqrt{ }$ award (B1) for $9 \times(\mathrm{b})(\mathrm{i})$
9 (a)	$360 \div 10=36$	1	Accept $360 \div 5=72$ followed by $72 \div 2=36$ or equivalent
(b)(i)	54	1	Correct answer only
(b)(ii)	108	1	$\sqrt{ }$ award (B1) for $2 \times$ (b)(i)
(c)(i)	5.70	2	Accept 5.701516947 rounded to ≥ 3 s.f. $\sqrt{ }$ award (M1) for $9.7 \times \cos$ (b)(i) or equivalent method

QUESTION	ANSWER	MARK	
(c)(ii)	11.4	1	Accept 11.40303389 rounded to ≥ 3 s.f.

TYPES OF MARK

Most of the marks (those without prefixes and ' B ' marks) are given for accurate results, drawings or statements. ' M ' marks are awarded for any correct method applied to the appropriate numbers.
'B' marks are given for a correct statement or step.
' A ' marks are for accurate results or statements but are awarded only if the relevant ' M ' marks have been earned. 'SC' marks are awarded in special cases.
The symbol ' $\sqrt{ }$ ' indicates that a previous error is to be 'followed through' i.e. the mark can be gained if the candidate has made no further error in obtaining the relevant result.

