Question 1

Put one of the symbols $<,=$ or $>$ between $\frac{1}{6}$ and 17% to make a correct statement.

$$
\text { Answer } \frac{1}{6} \text {... } 17 \%
$$

Question 2

(a) Calculate $\left(4.74^{2}+6.29^{2}\right)^{3}$, writing down your full calculator display.

> Answer (a) ... [1]
(b) Round your answer to part (a) to 2 significant figures.

Answer (b)

Question 3

Work out $\left(\frac{0.07728}{27600}\right)^{2}$, giving your answer in standard form.

Answer.

Question 4

Simplify $\quad 12 x^{10} \times 3 x^{4}$.

Answer

Question 5

Write down the value of 3^{-3}, giving your answer as a fraction.

Question 6

Alexia invests $\$ 380$ for 6 years at 5% per year simple interest.
How much interest does she receive?

Answer \$

Question 7

In April 1998, one US dollar was worth 128.65 Japanese Yen.
Tomoaki changed 20000 Yen into dollars.
How much did he receive? Give your answer correct to 2 decimal places.

Answer \qquad dollars
[2]

Question 8

The Earth is 1.5×10^{8} kilometres from the Sun.
Light from the Sun takes 8 minutes to reach the Earth.
Jupiter is 7.78×10^{8} kilometres from the Sun.
Work out how long it takes light from the Sun to reach Jupiter.
\qquad minutes

Question 9

The diagram shows two temperature scales, Fahrenheit and Celsius, alongside each other.
(a) What temperature on the Celsius scale is equivalent to 0° on the Fahrenheit scale? Give the answer correct to the nearest degree.
\qquad
(b) The temperature rises from -15° Celsius to 10° Celsius.

How many degrees is this on
(i) the Celsius scale,

Answer (b)(i) .${ }^{\circ} \mathrm{C}$
(ii) the Fahrenheit scale?

Answer (b)(ii) .. ${ }^{\circ} \mathrm{F}$

Question 10

(a) A piece of rope is 70 m long, to the nearest metre. Complete the statement about the length of the rope.

Answer (a) \qquad $\mathrm{m} \leqslant$ length $<$ m
(b) Another piece of rope is 9 metres long, to the nearest 10 centimetres. Write down the shortest possible length of this piece of rope.
\qquad

Question 11

(a) Factorise completely $2 x^{2}-6 x$.
Answer (a)
(b) Find the value of $2 x^{2}-6 x \quad$ when $x=3$.

Question 12

Solve the simultaneous equations $\quad x+2 y=1$, $x+4 y=5$.

```
Answer }x
    y=

\section*{Question 13}

Solve the equations
(a) \(5 x-3=42\),

Answer (a) \(x=\)
(b) \(5(x-3)=20\).

\section*{Question 14}


The graph shows the height of a tomato plant which was measured at the end of each week for 10 weeks. For example, at the end of week 2 the height of the plant was 10 cm .
(a) What was the height of the plant at the end of week 4 ?

Answer (a) cm
(b) Estimate the height of the plant after \(6 \frac{1}{2}\) weeks.

Answer (b) cm
(c) How many centimetres did the plant grow between the end of week 5 and the end of week 7?

Answer (c) \(\qquad\) cm
(d) During which week did the plant grow most?

Answer (d) Week

\section*{Question 15}
(a) Complete the table of values for \(y=x^{2}-4 x\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline\(x\) & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline\(y\) & & 5 & 0 & & -4 & -3 & 0 & & \\
\hline
\end{tabular}
(b) On the grid below, plot these points and then draw the graph of \(y=x^{2}-4 x\) for \(-2 \leq x \leqslant 6\).


\section*{Question 15}
(c) Use your graph to find the two values of \(x\) when \(x^{2}-4 x=2\).
\[
\text { Answer (c) } x=\text {.................. and }
\]
(d) Complete the table of values for \(y=3-x\).
\begin{tabular}{|l|l|l|l|}
\hline\(x\) & -2 & 2 & 6 \\
\hline\(y\) & & & \\
\hline
\end{tabular}
(e) On the same grid, draw the graph of \(y=3-x\) for \(-2 \leqslant x \leqslant 6\).
(f) Write down the coordinates of the two points where the graphs intersect.

[2]
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline QUESTION & \multicolumn{5}{|c|}{ANSWER} & MARK & \\
\hline 1 & \multicolumn{5}{|l|}{<} & 1 & \\
\hline 2 (a) & \multicolumn{5}{|l|}{238693.7513} & 1 & Accept any equivalent, but must be \(\geq 6\) sig figs \\
\hline (b) & \multicolumn{5}{|l|}{240000} & 1 & \(\checkmark\) from (a) \\
\hline 3 & \multicolumn{5}{|l|}{\(7.84 \times 10^{-12}\)} & 2 & (SC1) for figures 784 \\
\hline 4 & \multicolumn{5}{|l|}{\(36 x^{14}\)} & 2 & Must be in form \(m x^{n}\). (B1) for 36 and (B1) for 14 \\
\hline 5 & \multicolumn{5}{|l|}{\(\frac{1}{27}\)} & 2 & (B1) for \(\frac{1}{3^{3}}\) or \(\left(\frac{1}{3}\right)^{3}\) or \(0.037(037 \ldots)\) or \(\frac{37}{1000}\) \\
\hline 6 & \multicolumn{5}{|l|}{114} & 2 & (M1) for \(380 \times 5 \times 6 \div 100\) \\
\hline 7 & \multicolumn{5}{|l|}{155.46} & 2 & Correct answer only
\[
\text { (M1) for } 20000 \div 128.65
\] \\
\hline 8 & \multicolumn{5}{|l|}{41.5} & 2 & (M1) for \(7.78 \times 8 \div 1.5\) seen or equivalent \\
\hline 9 (a) & \multicolumn{5}{|l|}{-17.8} & 1 & Correct answer only \\
\hline (b)(i) & \multicolumn{5}{|l|}{25} & 1 & Correct answer only \\
\hline (b)(ii) & \multicolumn{5}{|l|}{45} & 1 & Correct answer only \\
\hline 10 (a) & \multicolumn{5}{|l|}{69.570 .5} & 1, 1 & Correct but reversed answers score 1 mark \\
\hline (b) & \multicolumn{5}{|l|}{8.95} & 1 & \\
\hline 11 (a) & \multicolumn{5}{|l|}{\(2 x(x-3)\)} & 2 & (B1) for \(2\left(x^{2}-3 x\right)\) or \(x(2 x-6)\) \\
\hline (b) & \multicolumn{5}{|l|}{0} & 1 & \\
\hline 12 & \multicolumn{5}{|l|}{\(x=-3 \quad y=2\)} & 3 & \begin{tabular}{l}
(M1) for correct method \\
(A1) for either correct answer
\end{tabular} \\
\hline 13 (a) & \multicolumn{5}{|l|}{9} & 2 & (B1) for \(5 x=45\) \\
\hline (b) & \multicolumn{5}{|l|}{7} & 2 & (B1) for \(x-3=4\) \\
\hline 14 (a) & \multicolumn{5}{|l|}{50} & 1 & Correct answer only \\
\hline (b) & \multicolumn{5}{|l|}{92 to 94} & 1 & \\
\hline (c) & \multicolumn{5}{|l|}{30} & 1 & Correct answer only \\
\hline (d) & \multicolumn{5}{|l|}{4} & 1 & Correct answer only \\
\hline 15 (a) & \(\underline{x}\) & -2 & - & 5 & 6 & 3 & \begin{tabular}{l}
(T2) for 3 correct y values \\
(T1) for 2 correct y values \\
Mark the table - no feedback from the graph
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline QUESTION & \multicolumn{4}{|c|}{ANSWER} & MARK & \\
\hline \begin{tabular}{l}
\[
\}
\] \\
(b)
\end{tabular} & \multicolumn{4}{|l|}{\begin{tabular}{l}
9 correct or \(\sqrt{ }\) correct plots Tolerance 1 mm \\
Reasonably correct curve
\end{tabular}} & \[
3
\] & \begin{tabular}{l}
(P2) for 7 or 8 correct or \(\sqrt{ }\) correct plots \\
(P1) for 5 or 6 correct or \(\sqrt{ }\) correct plots \\
Not more than 1 mm from the 9 correct points No double lines or an unduly thick line for the curve Condone ruled line for \(-2 \leq x \leq-1\) and for \(5 \leq x \leq 6\) but not elsewhere
\end{tabular} \\
\hline (c) & \multicolumn{4}{|l|}{-0.5 to -0.4 and 4.4 to 4.5} & 1, 1 & \begin{tabular}{l}
Allow calculation of roots \\
If coordinates given, mark \(x\) values \\
If more than 2 roots given, mark any incorrect ones
\end{tabular} \\
\hline (d) & \[
\begin{array}{|l|}
\hline x \\
\hline y \\
\hline
\end{array}
\] & -2
5 & & 6 & 2 & (T1) for 2 correct \(y\) values Mark the table - no feedback from the graph \\
\hline (e) & \multicolumn{4}{|l|}{Correct, ruled straight line} & 2 & \begin{tabular}{l}
Line must be at least 8 cm long \\
(L1) for intention to draw a single straight line (not horizontal or vertical) through two (or three) of 'his' points.
\end{tabular} \\
\hline (f) & \multicolumn{4}{|l|}{\[
\begin{aligned}
& (-0.85 \text { to }-0.75,3.75 \text { to } 3.95) \\
& \text { and }(3.75 \text { to } 3.85,-0.85 \text { to }-0.75)
\end{aligned}
\]} & \[
1
\] & If no marks earned, award (SC1) for any two of the four coordinates correct. \\
\hline
\end{tabular}

\section*{TYPES OF MARK}

Most of the marks (those without prefixes and 'B' marks) are given for accurate results, drawings or statements. ' M ' marks are awarded for any correct method applied to the appropriate numbers.
' B ' marks are given for a correct statement or step.
' \(A\) ' marks are for accurate results or statements but are awarded only if the relevant ' \(M\) ' marks have been earned.
'SC' marks are awarded in special cases.
' \(P\) ' marks are for plotting co-ordinates accurately.
'L' marks are for drawing a straight line with a ruler.
' \(T\) ' marks are for completing values in a table
The symbol ' \(\sqrt{ }\) ' indicates that a previous error is to be 'followed through' i.e. the mark can be gained if the candidate has made no further error in obtaining the relevant result.```

