MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

0581 MATHEMATICS

0581/23

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Page 2 Mark Scheme: Teachers' version		Paper
	IGCSE – October/November 2010		23

Abbreviations

- cao correct answer only
- cso correct solution only
- dep dependent
- ft follow through after error
- isw ignore subsequent working
- oe or equivalent
- SC Special Case
- www without wrong working

Qu.	Answers	Mark	Part Marks
1	-8.3	1	Allow $-8\frac{3}{10}$
2	21 55	1	Allow 9.55 pm
3	1.6305 cao	2	B1 4.33(44) seen or answer 1.63, 1.630, 1.6304
4		1, 1	
5	Correct working	2	M1 $\frac{15}{4} + \frac{4}{3} = \frac{45}{12} + \frac{16}{12}$ M1 $\frac{61}{12} = 5\frac{1}{12}$
6	$4.93\% < \frac{20}{41} < 0.492 < \frac{80}{161}$	2	Allow decimal equivalents in answer space M1 decimals 0.48(78), 0.496(8), 0.0493
7	1.14	2	M1 3.38 ÷ 1.04 (= 3.25) or M1 4.39 × 1.04
8	1200	2	M1 figs 8 ÷ 40 × figs 9 ÷ 15 or M1 (figs 8 × figs 9) ÷ (40 × 15)
9	9.6 cao	2	M1 $\frac{x}{8} = \frac{12}{10}$ oe
10	216.32 cao	2	M1 200 × $(1 + (4/100))^2$ oe
11	13	2	M1 21 + 15 - 23 or M1 15 - $x + x + 21 - x + 1 = 24$ oe
12	(a) 25	1	If zero scored SC1 for 250 and 4 or
	(b) 0.4	1	6.25 and 6.35
13	$10a + b \text{ or } a \times 10^1 + b (\times 10^0)$	2	M1 $[a \times 10^7 + b \times 10^6] \div 10^6$

Page 3	Page 3 Mark Scheme: Teachers' version		Paper
	IGCSE – October/November 2010		23

-			· · · · · · · · · · · · · · · · · · ·
14	10.8 or $10\frac{70}{83}$	3	M1 figs 10 ÷ time M1 10 ÷ 0.92r, 0.922 or 83/90
15	y = -2x + 8 cao oe	3	M1 (m =) $\frac{8-2}{0-3}$ oe B1 c = 8 or y = mx + 8 or subst. correct point in y = "m" x + c
16	$\frac{4h}{g^2}$ or $h\left(\frac{2}{g}\right)^2$	3	M1 squaring correctly M1 clearing denominator correctly M1 dividing by coefficient of <i>i</i> or SC2 for correct unsimplified expression
17	x = -1, y = 5	3	M1 consistent multiplication and either add or subtract A1 for one correct after M1
18	315	3	M1 $\frac{x}{360} \times 2 \times \pi \times 8$ oe M1 $\frac{x}{360} \times 2 \times \pi \times 8$ (+ 16) = (16 +) 14 π
19	2.88	3	M1 40^3 oe seen A1 2 880 000 B1ft their 2 880 000 \div 100 ³ or B1 0.000045 M1 40^3 A1 cao or M1 0.4 ³ M1 45 \times 0.4 ³ A1
20	(a) 63.4	2	$\mathbf{M1}\tan(M) = \frac{4}{2}\mathrm{oe}$
	(b) Vertices at (4, 1), (8, 1) and (10, 3)	2	B1 two vertices correct
21	(a) 2.4 oe	1	
	(b) 680	3	M1 an area found M1 $40 \times 20 - \frac{1}{2} \times 20 \times 12$ oe
22	$y \ge 1, \ x \le 3, y \le x + 5$ oe	5	B1 $y \ge \mathbb{R}$ 1 B1 $x \ge \mathbb{R}$ 3 B2 $y \ge \mathbb{R} x + 5$ or B1 $y \ge \mathbb{R} - x + 5$ where \mathbb{R} is any inequality B1 all 3 inequalities correct
23	(a) (Angles in) same segment	1	Allow (angles on) the same arc
	(b) (i) 100 (ii) 43	1 1	
	(ii) 43 (iii) 3	2	B1 <i>OBC</i> or <i>OCB</i> = $\frac{1}{2}(180 - 86) (= 47)$

Page 4		Mark Scheme: Teachers' version		Syllabus	Paper	
	IGCSE – Octob		er/November 2010		0581	23
24	(a) $\frac{x-2y}{xy}$		2	B1 correct nu B1 correct der		
	(b) $\frac{x}{3}$ www		3	M1 $x(x + 1)$	M1 3(<i>x</i> + 1)	
25	(a) -3		2	B1 g($\frac{1}{2}$) = 2 d	or $fg(x) = \frac{2}{x} - 7$ oe	
	(b) $\frac{1}{2x-7}$		1			
	(c) $\frac{x+7}{2}$		2	M1 for $y + 7 =$	= 2x or x = 2y - 7	