As part of CIE's continual commitment to maintaining best practice in assessment, CIE has begun to use different variants of some question papers for our most popular assessments with extremely large and widespread candidature, The question papers are closely related and the relationships between them have been thoroughly established using our assessment expertise. All versions of the paper give assessment of equal standard.

The content assessed by the examination papers and the type of questions are unchanged.

This change means that for this component there are now two variant Question Papers, Mark Schemes and Principal Examiner's Reports where previously there was only one. For any individual country, it is intended that only one variant is used. This document contains both variants which will give all Centres access to even more past examination material than is usually the case.

The diagram shows the relationship between the Question Papers, Mark Schemes and Principal Examiner's Reports.

Question Paper	Mark Scheme	Principal Examiner's Report
Introduction	Introduction	Introduction
First variant Question Paper	First variant Mark Scheme	First variant Principal Examiner's Report
Second variant Question Paper	Second variant Mark Scheme	Second variant Principal Examiner's Report

Who can I contact for further information on these changes?

Please direct any questions about this to CIE's Customer Services team at: international@cie.org.uk

MARK SCHEME for the October/November 2007 question paper

0580 and 0581 MATHEMATICS

0580/01 and 0581/01 Paper 1 (Core), maximum raw mark 56

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2007	0580/0581	01

Abbreviations

In addition to those already seen the following may crop up.

- cao correct answer only
- ww-without working
- www-without wrong working
- oe or equivalent
- soi seen or implied
- bod benefit of doubt
- art anything rounding to
- isw ignore subsequent working
- $\mathrm{ft}-\mathrm{follow}\ \mathrm{through}$
- oor out of range
- isr-ignore subsequent rounding
- $rot-rounded \ or \ truncated$
- mog marks on graph

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2007	0580/0581	01

Question	Answers	Mark	Notes
1	-13	1	Not 13–
2	(\$) 10	2	M1 for $35 \div (5 + 2)$ or better. SC1 for (\$) 25 only or 25:10 or 25 and 10 in the answer space.
3	(x =) - 1	2	M1 for $1 - 4 = x + 2x$ oe Not embedded unless $x = -1$ seen.
4	60	2	M1 for 52.50 ÷ 0.875. SC1 for answers 59.659 rot or 60.3448 rot (from rounding 0.875 to 0.88 or 0.87.)
5	2x(2y-1) final answer	2	SC1 for $x(4y-2)$ or $2(2xy-x)$ or $2x(2y+1)$ Or SC1 for $2x(2y-1)$ not as final answer.
6	art39.8	2	M1 for $\tan p = \frac{25}{30}$ oe
7	1250 (≤ <i>d</i> <) 1350	2 13	1 mark for each in correct order
8	(a) Two correct lines of symmetry, No extra lines(b) Parallelogram	1	Lines must be a minimum of length and height of the figure.
9	(a) 15 (b) $\frac{11}{9}$ oe $\frac{22}{18} - \frac{15}{18} = \frac{7}{18}$ oe	1 B1 E1	Eg $\frac{66}{54}$ Allow $\frac{9}{9} + \frac{2}{9}$ or better Must be finally reduced to $\frac{7}{18}$
10	(a) 30 (b) 12	1 2ft	M1 for $360 \div$ either 30 or their (a) ft. answer only when calculation gives an integer > 2
11	art38.3	3	M1 for $\frac{d}{50} = \cos(180 - 140)$ oe soi M1dep. for ($d = 150 \cos(180 - 140)$ oe SC1 for 32.1 (distance east)

Page 4	Mark Scheme			Syllabus Paper	
	IGCSE – October/November 200		2007	0580/0581	01
			1		
Question	Answers	Mark		Notes	
12	(a) -3	1	B1 for the	ir (a)x or $+3$ as interc	cept seen
	(b) $(y =) -3x + 3$	2ft	in the equa	ation. Not $y = 3$	
	Final answer				
13	(a) 55 or art 54.6	2	M1 for 13	$1 \div 240 (\times 100)$ impli	ied by 54.5
	(b) 15	2	M1 for 6.2	$25 \div 100 \times 240$	
			SC1 for ar	nswer 225	
14	(a) art 25 1 www	2	M1 for π	$\times 8 \text{ or } 2\pi \times 8 \div 2 \text{ imr}$	lied by
	(4) 410 2011 11 11	-	answer of λ	25	med by
	(b) 61 (Can be on	2	M1 for 90	-29 or 180 - 90 - 2	.9
	diagram)		SC1 for an	ngle $Q = 90^{\circ}$ soi	-
				02	
15	(a) 1	1			
	(b) x_{2}^{0}	1		1 \mathbf{E} $(\mathbf{r})^2$	
	(c) $\frac{x^2}{9}$	2	M1 for $\frac{1}{\left(\frac{3}{x}\right)^2}$	$\frac{1}{2}$ or better. E.g. $\left(\frac{x}{3}\right)^2$	
			B1 if answ	ver contains x^2 as number of the second	merator or
			$3^{2}(\text{or }9)$ as	s denominator.	
		15			
		15			
16	(a)(i) 18 000	1			
	(ii) 1.8×10^4	1 ft	1.7598×1	0^4 gets 0	
	(b) 0.056	2	B1 for 0.0	6 or 0.0565 or 0.056	49
			or 0.05	57 seen	
			SC1 for fir	nal answer 0.0560(0))
17	(a) (\$) 16.2(0)	2	M1 for (20	$00 \times 4.05 \times 2)/100$	
			SC1 for 21	16.2(0)	
	(b) (\$) 16.3(2) or 16.3(0)	2	M1 for 20	$0(1.04)^2 - 2000e$	
			SC1 for 2	16.3(2).	
			SC1 for bo	oth 8.(00) and 8.3(2)	seen
10	() (*) T / F7T 1	1		•, , 1	
18	(a)(1) Vector KL drawn	1	If arrow sh	nown, it must be cori	rect.
	(ii) (0.2)	1 🔂	M1 for you	eter PS drown or for	·•
	(i) $(0,2)$	γ		(0) i S unawin of 10 r	
	$(\mathbf{b})(1,-1)$	2	$(PS =) \begin{bmatrix} \neg \\ 2 \end{bmatrix}$		
			(2)		1
			SCI Point	S on diagram at (1, -	-1)
		12			
10	(a)(i) 60 (m/min)	1			
19	(a)(1) 00 (111/11111) (ii) 3.6 (km/h)	1 2cao	M1 for the	$r(a) \times 60 + 1000$	
	(II) 3.0 (KIII/II)	2000	$r 1 2 \cdot 0$	33 or better	
	(b) 3 (km/h)	2	$\begin{array}{c} 01 \ 1.2 \neq 0. \\ M1 \ \text{for tot} \end{array}$	al distance (figs 15)	- total time
		-	Values see	an unstance (figs $13)$ -	f units
		5			/1 umo.

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2007	0580/0581	01

Question	Answers	Mark	Notes
1	-12	1	Not 12–
2	(\$) 25	2	M1 for $45 \div (4 + 5)$ or better SC1 for (\$) 20 only or 20:25 or 25 and 20 in the answer space.
3	(x =) - 2	2	M1 for $2 - 10 = x + 3x$ oe Not embedded unless $x = -2$ seen.
4	80	2	M1 for 70.80 ÷ 0.885 SC1 for answers 79.55 rot or 80.45 rot from rounding 0.885 to 0.89 or 0.88)
5	2q(p-2) final answer	2	SC1 for $q(2p-4)$ or $2(pq-2q)$ or $2q(p+2)$ or SC1 for $2q(p-2)$ not as final answer.
6	art34.5	2	M1 for tan $p = \frac{22}{32}$ oe Grads 38.3 or rads 0.6023 check for M1 A0 only.
7	8750 (≤ <i>d</i> <) 8850	2 13	1 mark for each in correct order SC1 for fully correct but reversed
8	(a) Two correct lines of symmetry. No extra lines.(b) Parallelogram	1	Lines must be a minimum of length and height of the figure.
9	(a) 15 (b) $\frac{17}{12}$ oe $\frac{34}{24} - \frac{15}{24} = \frac{19}{24}$ oe	1 B1 E1	Eg $\frac{68}{48}$ Allow $\frac{12}{12} + \frac{5}{12}$ or better Must be finally reduced to $\frac{19}{24}$
10	(a) 20 (b) 18	1 2ft 11	M1 for 360 ÷ either 20 or their (a) Ft answer only when calculation gives an integer >2
11	art34.6 www	3	M1 for $\frac{d}{40} = \cos(180 - 150)$ oe soi M1dep for ($d =$) 40 cos (180 - 150) oe SC1 for 20 (distance east) Grads 35.6 or rads 6.17 check M2 A0 only.

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2007	0580/0581	01

Question	Answers	Mark	Notes
12	(a) -2	1	Allow $\frac{-2}{1}$ and $\frac{-4}{2}$ or $\frac{2}{-1}$ or $\frac{4}{-2}$
	(b) $(y =) -2x + 4$	2ft	B1 for their (a) x or +4 as intercept seen
	Final answer.		in the equation. Not $y = 4$
10	() 40 (47.0		
13	(a) 48 or art $4/.8$	2	M1 for $153 \div 320 (\times 100)$
	(b) 12	2	M1 for $3.75 \div 100 \times 320$ SC1 for answer 208
			SC1 for answer 508
14	(a) art 40.8 or art 40.9	2	M1 for $\pi \times 13$ or $2\pi \times 13 \div 2$ implied by
			answer of 41
	(b) 57	2	M1 for 90 – 33 or 180 – 90 – 33
			SC1 for angle $Q = 90^{\circ}$ soi
15	(a) 1	1	
10	(a) 1 (b) v^8	1	
	(c) $\frac{p^2}{p^2}$	2	M1 for $\frac{1}{1+2}$ or better. E.g. $\left(\frac{p}{5}\right)^2$
	25		$\left(\frac{5}{p}\right)^2$
			B1 if answer contains p^2 as numerator or
			5^{2} (or 25) as denominator
		15	
16	(a)(i) 16 000	1	
	(ii) 1.6×10^4	1 ft	1.5583×10^4 gets 0.
	(b) 0.0037	2	B1 for 0.004 or 0.00372 or 0.003718
			seen.
			SC1 final answer 0.00370(0)
17	(a) (\$) 48.4(0)	2	M1 for $(400 \times 6.05 \times 2)/100$
			SC1 for 448.4(0)
	(b) (\$) 49.4(4) or 49.4(0)	2	M1 for $400(1.06)^2 - 400$
			SC1 for 449.44
			SC1 for 24 and 25.4(4) seen
18	(a)(i) Vector KL drawn	1	If arrow shown it must be correct
	correctly	-	Allow <i>L</i> not labelled.
	(ii) (0, 2)	1 ft	Only ft their point if labelled <i>L</i> .
	(b) (2, 0)	2	M1 for vector PS drawn or for
			$(\mathbf{PS} =) \begin{pmatrix} 6 \\ 4 \end{pmatrix}$ Ignore 'fraction' line.
			∇T
		12	SC1 Foint 5 on diagram at (2, 0)
19	(a)(i) 45 (m/min)	1	
	(ii) 2.7 (km/h)	2cao	M1 for their (a) \times 60 \div 1000
			or $0.9 \div 0.33$ or better
	(b) 3.2 (km/h)	2	M1 for total distance(figs 16) ÷ total time
		_	Values seen, but independent of units.
		5	