

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

	CANDIDATE NAME		
	CENTRE NUMBER		ANDIDATE JMBER
¢ 4 %	MATHEMATICS		0581/41
ა ა	Paper 4 (Extended	۲) (۲	May/June 2012
0 3			2 hours 30 minutes
4	Candidates answe	er on the Question Paper.	
164*	Additional Material		cal instruments aper (optional)

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use a pencil for any diagrams or graphs.Do not use staples, paper clips, highlighters, glue or correction fluid.DO NOT WRITE IN ANY BARCODES.

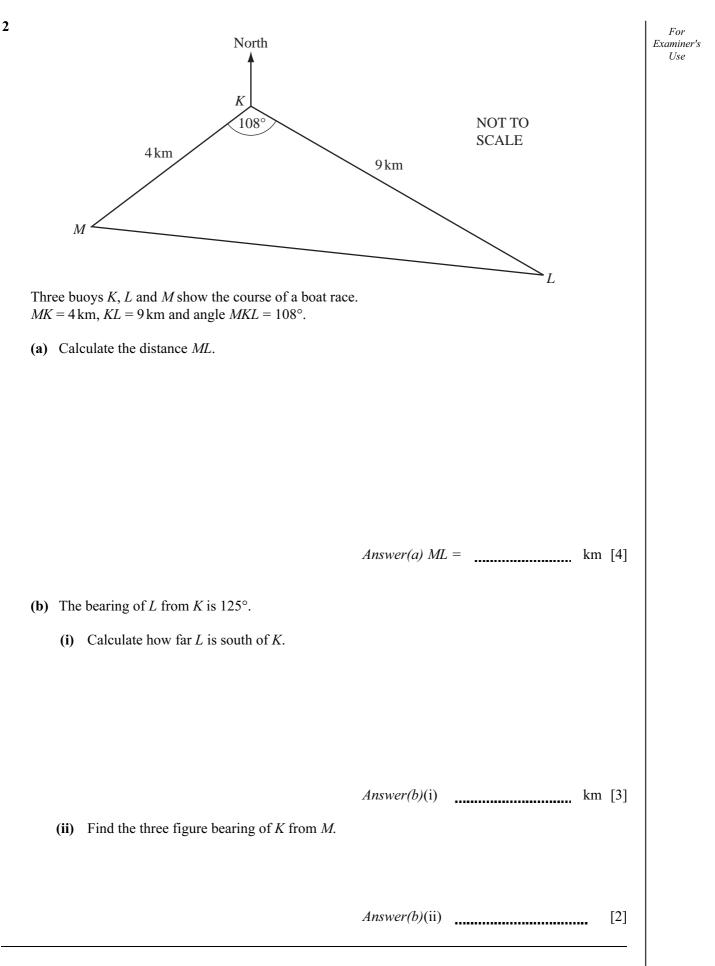
Answer all questions.

If working is needed for any question it must be shown below that question.

Electronic calculators should be used.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π use either your calculator value or 3.142.

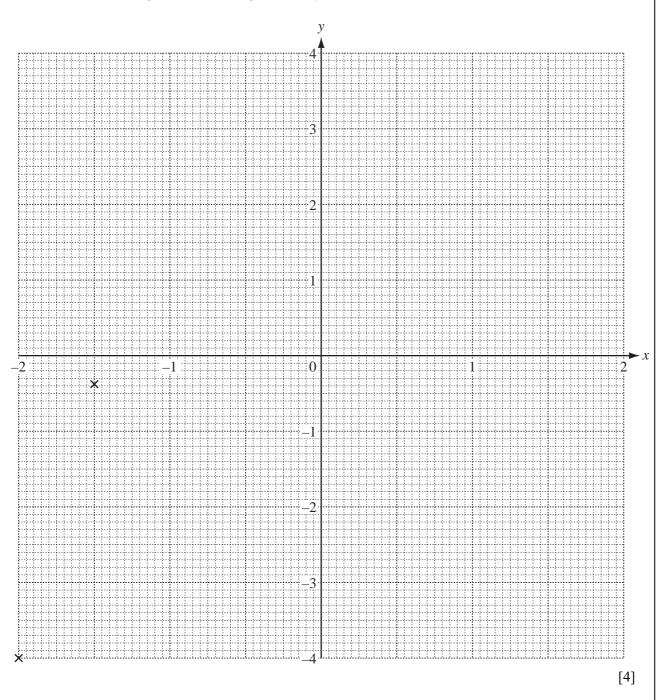
At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 130.


This document consists of **16** printed pages.

[Turn over

1	The	y sha	obby and Carl receive a sum of money. are it in the ratio 12:7:8. reives \$504.		For Examiner Use
	(a)	Cale	culate the total amount.		
	(b)	(i)	Anna uses 7% of her \$504 to pay a bill. Calculate how much she has left.	<i>Answer(a)</i> \$[3]
		(ii)	She buys a coat in a sale for \$64.68. This was 23% less than the original price. Calculate the original price of the coat.	<i>Answer(b)</i> (i) \$[3]
	(c)	This Cale	by uses \$250 of his share to open a bank accous s account pays compound interest at a rate of 1. culate the amount in the bank account after 3 ye e your answer correct to 2 decimal places.	nt. 6% per year.	3]
	(d)		buys a computer for \$288 and sells it for \$324 culate his percentage profit.		3]
				Answer(d) % [3]

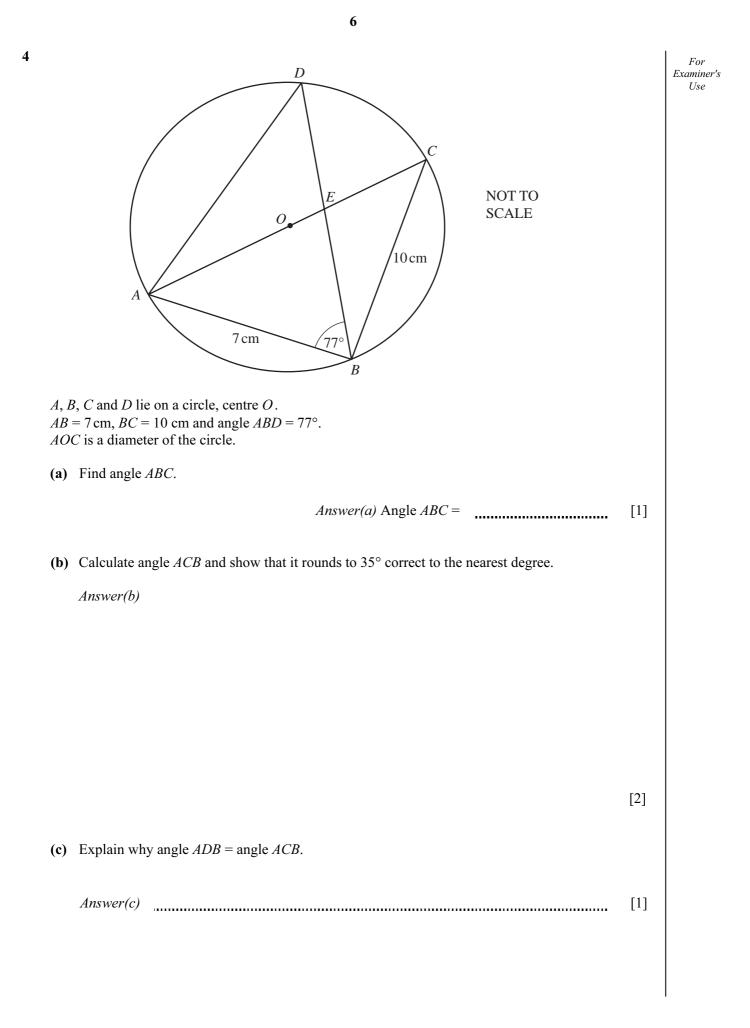
0581/41/M/J/12

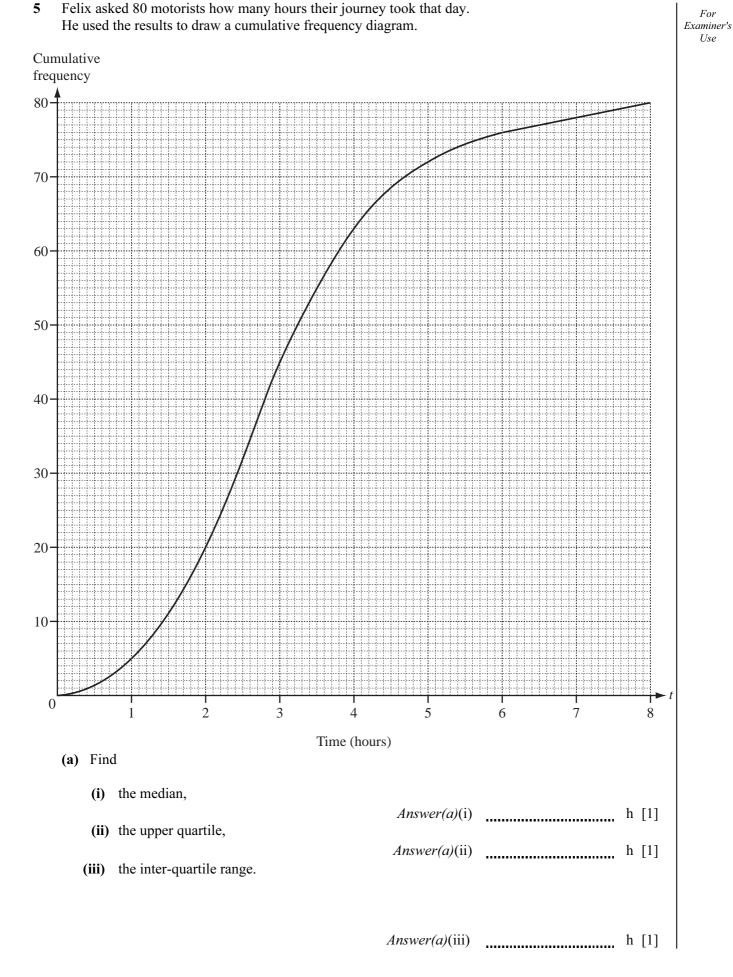


3 The table shows some values for the equation $y = x^3 - 2x$ for $-2 \le x \le 2$.

x	-2	-1.5	-1	-0.6	-0.3	0	0.3	0.6	1	1.5	2
У	-4	-0.38			0.57		-0.57			0.38	4

(a) Complete the table of values.


(b) On the grid below, draw the graph of $y = x^3 - 2x$ for $-2 \le x \le 2$. The first two points have been plotted for you.


[3]

For Examiner's Use

For (c) (i) On the grid, draw the line y = 0.8 for $-2 \le x \le 2$. [1] Examiner's Use(ii) Use your graph to solve the equation $x^3 - 2x = 0.8$. Answer(c)(ii) x = or x =[3] or x =..... (d) By drawing a suitable tangent, work out an estimate for the gradient of the graph of $y = x^3 - 2x$ where x = -1.5. You must show your working. Answer(d) [3]

7

0581/41/M/J/12

www.theallpapers.com

8

9

(b) Find the number of motorists whose journey took more than 5 hours but no more than 7 hours.

Answer(b)

For Examiner's Use

(c) The frequency table shows some of the information about the 80 journeys.

Time in hours (<i>t</i>)	$0 < t \le 2$	$2 < t \le 3$	$3 < t \le 4$	$4 < t \le 5$	$5 < t \le 6$	$6 < t \le 8$
Frequency	20	25	18			

(i) Use the cumulative frequency diagram to complete the table above.

[2]

[1]

(ii) Calculate an estimate of the mean number of hours the 80 journeys took.

(d) On the grid, draw a histogram to represent the information in your table in **part (c)**.

.1.1								10			i i	i i	i i		÷ .	- i -	- i -	i i	: :	÷ .	÷.		- i][]]	П.				11	œ	10			21	Œ		Ц.,			CI).		11			01		Π.	111	311	Q.,									11		
	ii		LL		i			.1.1	i		ш.	1. J.				i			L	.i	л.		.l.,	l.	I	11	.i.,			.i		L.L		i			LL		.i					.i					.i	.i	J.,	. J								 ii	J.,		ί.
			11				44					11								.i	л.					11	4.																						.i	4	4									 	4		L.,
			1.1				4.4	4.4				4.4					Å			.i	4		÷			1	4.			4		1.1	4.12				1.1							4					.i	4	4						- 4-			 	4	4.	Ļ.,
			1.1				<u>i. 1</u> .	1.1			<u></u>	1.1							1.1	.i	.1.		1			1						1.1	1.7				1.1	1.1				1.1	1					1.1	.i		1							1		 11	1	. <u>.</u>	
.1.1.	ii		L.L				L.L.	1.1			L. İ.	1.1	1.1	.1)		İ.,).		1.1	.i	.1.	L. I.	.i			11	.i.,			.i		t.t	1.1				1.1	1.1		. İ.,	i.		1.1	.1				1.1	.i	.i	<u>1.</u>	. J								 11	<u>i.</u> .	. İ.,	
	ii		L.L.				. J.	1.1			Ш.	L.L	IJ			i		L.	L	.i	А.	LJ.	.i.,			J i	.i.,			.i.,		L.L	1.2				L.L					u	1.1		i		U.	1.1	.i	.i	j.,	J.,				i.				 ii	j.,	. i.,	ί.
																																						1.1										1.1	1		1									11	1	. 1	
111			CΣ				<u></u>	1.1				<u>. </u>			1		1				11		1	11		1.1	1					£Ξ	10				<u> </u>							11						1	1	1	1								1	1	
111			111	111			6 T	1 1			- T		1 1	111			1						1	1							1	С Т	1.1				111						1	1				1.1			1	1	1				1	1	1		1		
111		111	11	111			11	11	1		11	111	1		1		1		11		1			1		111	1				1	11	117				11					11	1	1	1			1		1	1	1	1				1	1	1	1	1	1	
TT			ΠT	111	1		111	111	T	1	- T	111	111		1	1		11	111	1	11	11		1		111	T	1		T	T	6 T		1	1	1	TΤ	T	1	111	1	11	T	111	1		T		T	1	1	1	T	1	1	1	1	T	T	11	1.	1	
111			ſΤΪ	111		1	C T	11	1		- T	m	ΤĤ	1	1.		- 1	m	[]]	1	11	11	Ť	1	11-	111	Ť	1		1	1	ΠŤ	111	1		11	ΠŤ	11	1	111	1	m	17	1		1	ΠŤ	11	1	1	1	1	Ť			1	1	Ť	Ť	171	1.	1	Ĩ
111			1 T	1 1	1		11	1.1	1	1	1	111	1.1		1	1	1	(T) (1		1	1		11					1	6 T	1.1		1		111	1 1	1			(T	1 1	1	1	1		1 1	1	1	1	11	1	1			1	1	1	1	1		
111			11											1							Ŧ	11	1	1		111	Ť			1	1	1 1	111	111	- T																	11								11	T		
111			t t				111		411					111													11						111					111						111				111												 1-1	111	11	
-11	ii	- j i	i ri	-1-1	·-†		crit	777		<u>†</u> -	r i i	tri	÷.,	-†)	-1	i	i-	r-i	t-t	÷	÷÷	r i	÷÷	†-	ii-	irri	÷÷÷	·		· • · ·	÷÷	i r	419		†-	er fr	h th	111		-1	- ir	ĊΤ	t ri	-†		j-	τŤ	t t	÷	÷÷	÷÷-	- tir -	÷			i-	- †r	÷	÷	 ii	÷	÷÷	
·+-+	! <u>†</u>		h-t-	+-+	·-+		cr†:	***	-+	+-	r-t-	†÷†	***		-+		+-	ŀΞ	<u>}</u> }	·†··	÷÷	r i	+	<u>†</u> -	!÷	÷	÷	÷		÷	÷÷	ł-†	· • • • •	·-+	+-	†-	ł-+	1-1	·†··		- tr	'nή	÷	-+	-+	÷÷	ĿΫ	÷-+	·†	·†	· †		÷		+	٠ŀ	··· †·	÷÷	-+	 ††	÷	÷÷	
****	•••••		tre.				9-9-							111											!†-								***					212																							÷		
-11			8-9-	-11	·-+		Ηt	***		+-	r-t-	trt	÷	4-4	-1	†	+-		1-1	· † · · ·		t t			+-	t - t	÷	·		· † · ·	-+	<u>+-</u> +-	+				t-t-	1.1		-1		Ŀή	1-1	-†	-+		- †	111	÷	· † · ·	4					÷	÷÷	÷÷	÷	 1-1	÷	÷	
	·				·							÷÷	÷										÷			÷÷÷				÷			÷?								e te		÷						÷	·	÷					÷	÷		÷	 	÷	÷	
+++	÷÷		+-+					+-+				÷÷								÷							÷			÷			+-+					÷-+					+	-+				÷-+			÷						÷		÷	 ÷	÷	÷	•
++++	÷÷			-++			÷÷	+-+				÷÷	÷	- <u>†</u> }			÷		}	÷	÷	r ÷	+			÷÷	÷÷			÷	÷÷	÷-+	+++		÷-	i-	t-t	÷		- ÷		÷÷	÷	-+		÷÷-	÷	÷÷	÷	÷÷÷	÷		÷			÷	÷÷	÷	÷	 ÷	÷	÷	
·+-+	·		k-d-				(n - 6 -	$-\dot{\phi}=-\dot{\phi}$			(4-	÷	- (n (n)					÷	22	· ÷ · · ·	- 4 -	See 64	de est		ii-	44	de la composición de la composición de la composición de la composición de la composición de la composición de	a de la competencia de la competencia de la competencia de la competencia de la competencia de la competencia d	i	- i	- 4-	in de	- 2 2				in e de	÷			in de la	2-4	÷)				~ 4	÷	÷	·	÷		÷				÷	÷	÷	 	÷	÷	•
-ii	ii	- i- i	ķ		·		pri-	÷-÷		<u>-</u>	; 	$\dot{\gamma} = \dot{\gamma}$	÷÷	- } ;			i-	}÷	}}	·÷	-i-	ŀ÷			-	ii	de e	· · · þ. ·	·;	· • • •	-÷-	÷-+	-j?	·		er in	ķ	· · · · · · · · · · · · · · · · · · ·	-i)	÷;	- 🕴			è-è	÷;	.÷	· i	-i	-4	-÷-			į-	-i-	÷	÷	 ii	÷	ų.	
-++	·				·		÷	+-+					المعالمة.		. i			<u>⊦</u>		·+	-÷-	i				÷	÷÷			· • • •		÷-+-	· · · ·					· · · ·	-+			<u>-</u> +-+	÷	-+			÷÷	÷÷	.÷	·		-+-						- ÷-		 ÷	÷	÷÷-	
-++			<u>+-+</u>							*-				- 6 1																																																	
	·		inin				i							- !		+			ļļ	÷						44	4											44					÷					÷	.÷	.÷	4									·			
			L. J.				<u>i. I.</u>		. i			1. J.	1.1		. i			1.1	ii	.i			.i		ii.	11				. i		1 1	1.1				1 1				- ÷-	: :	1 1		i			44	÷ .		÷ .		- 11					- 11	- ÷.	 : :	÷.,	÷.	

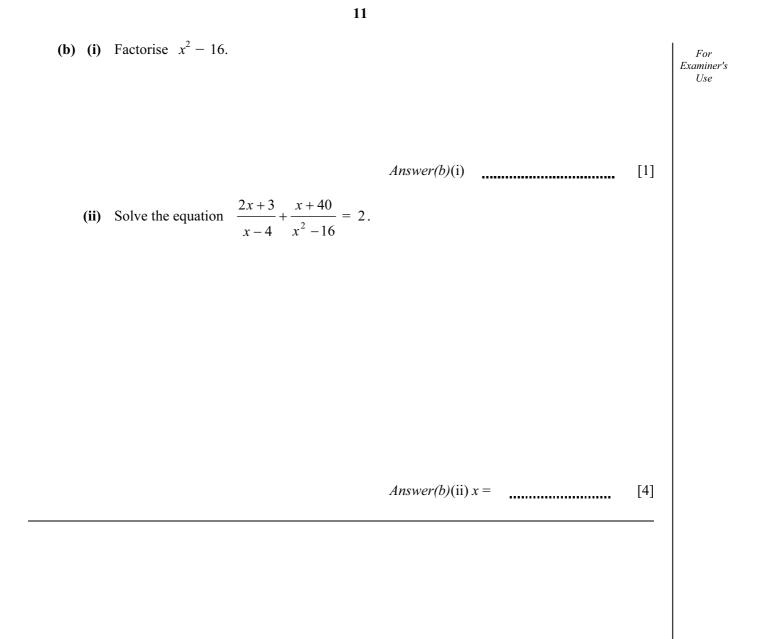
[Turn over www.theallpapers.com (i) Show that $4x^2 - 9x + 3 = 0$.

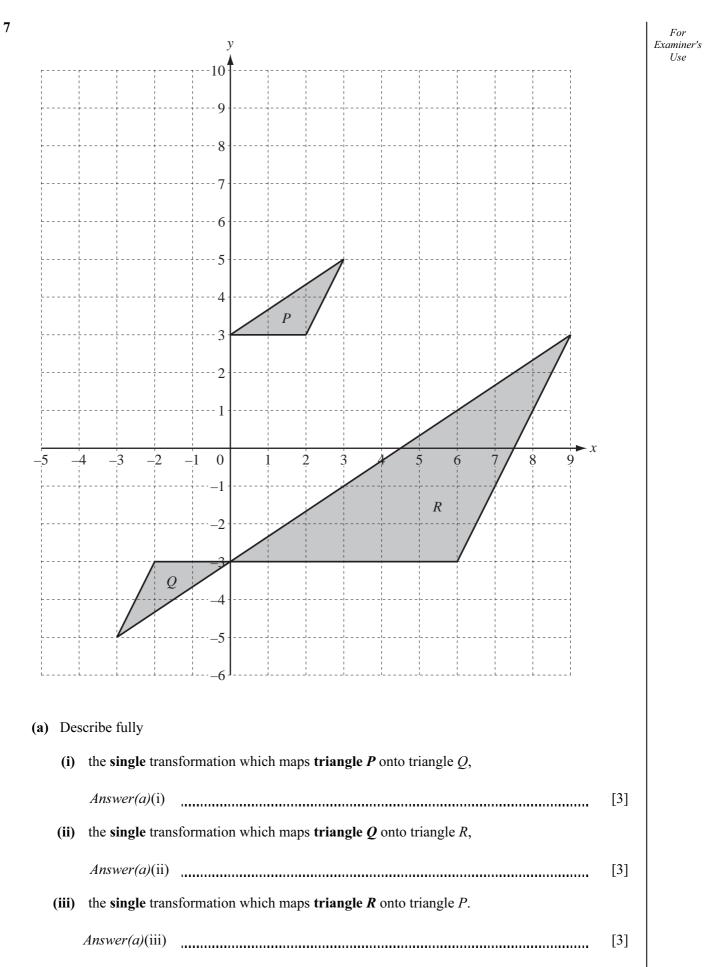
Answer (a)(i)

(ii) Solve the equation $4x^2 - 9x + 3 = 0$.

Show all your working and give your answers correct to 2 decimal places.

Answer(a)(ii) x = [4]


(iii) Calculate the height of the parallelogram.


Answer(a)(iii) m[1]

[3]

For

Examiner's Use

(b) On the grid, draw the image of

(i)	triangle <i>P</i> after translation by	$\begin{pmatrix} -4\\ -5 \end{pmatrix}$,	[2]
-----	--	---	-----

- (ii) triangle *P* after reflection in the line x = -1.
- (c) (i) On the grid, draw the image of **triangle** *P* after a stretch, scale factor 2 and the *y*-axis as the invariant line. [2]
 - (ii) Find the matrix which represents this stretch.

Answer(c)(ii)

[2]

For Examiner's Use

[2]

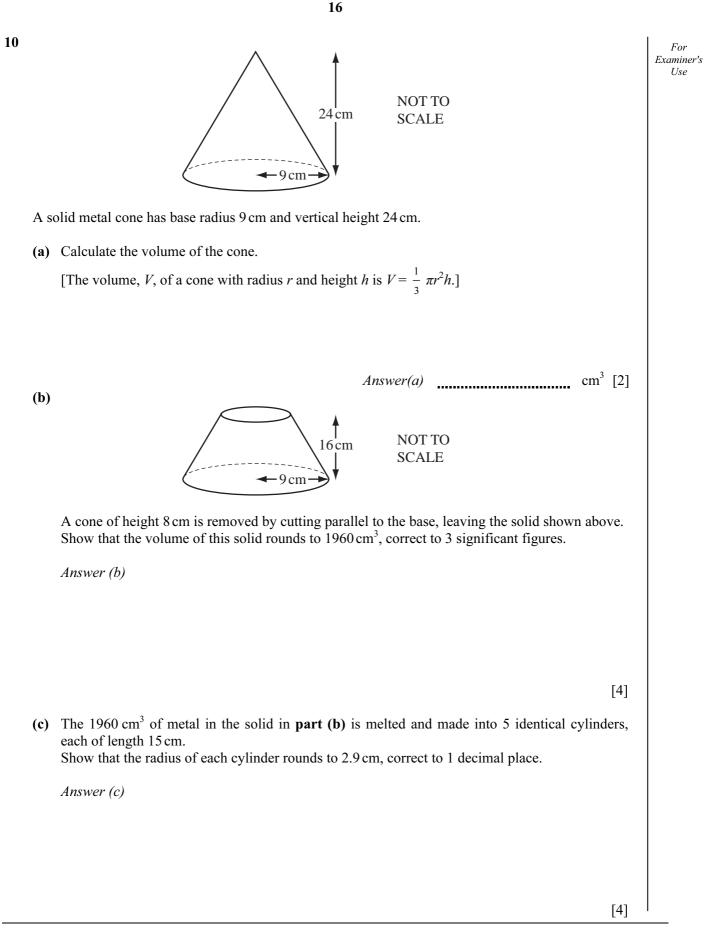
14

 $\mathscr{C} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

 $E = \{x : x \text{ is an even number}\}$

 $F = \{2, 5, 7\}$

8


For Examiner's Use

www.theallpapers.com

	$\mathbf{f}(x) = 3x + 5$	g(x) = 7 - 2x	h(x) =	$x^2 - 8$	For Examin Use
 (a) Find (i) f(3), (ii) g(x - 3)) in terms of <i>x</i> in its s	simplest form,	Answer(a)(i)		[1]
(iii) h(5 <i>x</i>) in	terms of x in its simple	plest form.	Answer(a)(ii)		[2]
(b) Find the inve	erse function $g^{-1}(x)$.		Answer(a)(iii)		[1]
	the form $ax^2 + bx +$	с.	Answer(b) $g^{-1}(x)$;) =	[2]
(d) Solve the equ	uation $ff(x) = 83$.	Ansv	ver(c) hf(x) =		[3]
(e) Solve the ine	equality $2f(x) < g(x)$		Answer(d) x =		[3]
			Answer(e)		[3]

Question 10 is printed on the next page.

0581/41/M/J/12

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.