MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

0581 MATHEMATICS

0581/12

Paper 1 (Core), maximum raw mark 56

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2012	0581	12

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
WWW	without wrong working
soi	seen or implied

Qu		Answers	Mark	Part Marks
1		16	1	
2		$82\% < \frac{23}{28} < 0.83 < \frac{5}{6}$	2	M1 for correct conversion of both fractions to decimals or percentages. Minimum 3 sf. or B1 for correct but reverse order
3		Wednesday 22 15 or 10 15pm	2	B1 B1
4	(a)	І сао	1	
	(b)	I N cao	1	
5	(a)	1.9	1	
	(b)	30.4	1	
6		$\begin{pmatrix} 13 \\ -2 \end{pmatrix}$	2	B1 for one correct component
7		25 (correct working essential)	2	M1 for 18 + 4 + 3 with denominator 12 must be soi (oe is possible)
8		64 000 or 6.4×10^4	2	SC1 for 63800 or 6.38×10^4 or figs 64 or 6.4×10^k in answer space.
9	(a)	a ⁵	1	
	(b)	0.04 or $\frac{1}{25}$	1	
10		12 550 ø <i>n</i> < 12 650	2	B1 for one correct or both correct but reversed.
11	(a)	109 681 final answer	1	
	(b)	1.09681×10^{5}	1ft	Their part (a) in standard form
12		4.46 or 4.456 to 4.459 cao	3	B1 for 28 seen M1 ft for $\frac{their28}{2\pi}$ oe or better.

IGCSE – May/June 2012 13 (a) $y(x - y)$ or $y(-y + x)$ 1 (b) $[x = 1, 4, 75, a_2]$ 2 M1 for $4x = 1, 4x = $	0581 12 = $12 + 7$ or $x - \frac{7}{4} = \frac{12}{4}$ or better			
13 (a) $y(x-y)$ or $y(-y+x)$ 1 (b) $[x-1] 4.75$ as 2 M1 for $4x = 1$	= $12 + 7$ or $x - \frac{7}{4} = \frac{12}{4}$ or better			
(b) $[n-1]475$ as 1 M1 for $4n-1$	= $12 + 7$ or $x - \frac{7}{4} = \frac{12}{4}$ or better			
	$x = 12 + 7$ or $x - \frac{1}{4} = \frac{1}{4}$ or better			
(b) $[x -] 4.75$ de 2 mil 101 4x -				
14 (a)Positive1				
(b) Zero oe 1				
(c) Negative 1				
15 (a) Kite 1				
(b) 14 cm^2 1, 1 Independent	t marks			
16 (a) 126 2 M1 for 7 ÷ or for 54 ÷	or $7 \div (8 + 3 + 7 + 2) \times 360$ $54 \div 3 \times 7$ or $144 \div 8 \times 7$			
(b) Line dividing sector into 126° 1ft Ft their ang and 36°	Ft their angle for blue sector.			
17 $[x =] 2 [y =] 5$ 3M1 for component appropriate Other mether A1 for correct	M1 for consistent multiply and add/subtract as appropriate. Allow computational errors. Other methods allowed. A1 for correct x or y .			
18 (a) 15 2 M1 for $\frac{9-}{0.4}$	11 for $\frac{9-3}{0.4}$ oe			
(b) 11.7(0) 2 M1 for 9 ×	M1 for 9 × 1.3 oe			
19 (a) [x =] 32 2 M1 for ang	le $OCD = 90^\circ$ soi (or angle $OCB = 90^\circ$)			
(b) $[y =] 58$ 2ftM1 for ang Follow throw	le $AEC = 90^{\circ}$ soi ugh 90 – their (a)			
20 (a) Pythagoras method $30^2 + 16^2 [= 34^2]$ or $30^2 + 256 [= 1156]$				
$34^2 = 1156$ or $\sqrt{1156} = 34$ E1dep				
$\frac{\text{Trig method}}{\text{Tan } A = \frac{30}{16} \text{ and } \text{Sin } C = \frac{16}{34} \text{ oe} \qquad \textbf{M1} \qquad \text{The two trights the triangle.}$	g ratios used must involve all 3 sides of			
Angles 61.9 and 28.1 and statement to show that angle $B = 90^{\circ}$ E1dep				
(b) 61.9 or 61.92 to 61.93 2 M1 for tan cos [<i>CAB</i> =	$[CAB =] \frac{30}{16} \text{ or sin } [CAB =] \frac{30}{34} \text{ or}$ $] \frac{16}{34} \text{ (or better)}$			

Page 4		Mark Scheme: Teachers' version		Syllabus	Paper	
		IGCSE – Ma	E – May/June 2012		0581	12
21 (a)	$\frac{\text{Exterior angle method}}{[\text{Ext angle =] } 360 \div 5}$ $5 \times (180 - 72) = 540$		M1 E1dep			
	$\frac{\text{Form}}{(n-2)}$	$\frac{\text{ula method}}{1 \times 180 \text{ or}}$ $\frac{2 \times 180}{n}$	M1			
	$(5-2)$ $(5-2)$ 5×10	$() \times 180 = 540 \text{ or}$ $() \times 180 = 540 \text{ or}$ $(5) \times 180 = 540 \text{ and}$ $() \times 180 = 540 \text{ or}$	E1dep			
	<u>Trian</u> Expla pentag	gle methods nation or sketch to split gon into 3 or 5 triangles.	M1			
	3×18 5×18	80 = 540 or 80 - 360 = 540	E1dep			
(b)	[x =] [y =]	104 135	3ft	B1 [<i>x</i> =] 104 M1 for 540 – (90	+76 + their x)	