

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/06

Paper 6 (Extended)

October/November 2011

1 hour 30 minutes

Candidates answer on the Question Paper

Additional Materials: Graphics Calculator

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

Do not use staples, paper clips, highlighters, glue or correction fluid.

You may use a pencil for any diagrams or graphs.

DO **NOT** WRITE IN ANY BARCODES.

Answer both parts **A** and **B**.

You must show all relevant working to gain full marks for correct methods, including sketches.

In this paper you will also be assessed on your ability to provide full reasons and communicate your mathematics clearly and precisely.

At the end of the examination, fasten all your work securely together.

The total number of marks for this paper is 40.

This document consists of **12** printed pages.

Answer both parts A and B.

For Examiner's Use

A INVESTIGATION MAXIMISING THE PERIMETER (20 marks)

Identical shapes can be joined to make larger shapes.

1	Equilateral triangles of side 1 cm may be joined edge to edge, for example
	but not like this.
	(a) The diagram below shows a shape made of 4 equilateral triangles and a shape made of 5 equilateral triangles.
	Draw a different shape made of 4 equilateral triangles and a different shape made of 5 equilateral triangles.
•	
•	
•	
	(b) (i) The diagram below shows a shape, made of 6 equilateral triangles, with a perimeter of 6 cm.
	Draw a different shape, made of 6 equilateral triangles, with a perimeter greater than 6 cm.
•	
•	
•	
•	

For Examiner's Use

		(ii)	The diag	gram b	elow	shows	a shape	e, made	of 7 e	equilater	al trian	gles, w	ith a p	erimeter
			Draw a o	lifferen	t shap	e, made	e of 7 eq	uilatera	l triangl	es, with	a perim	eter gre	eater th	an 7 cm.
•	•	•				•	•	•			• •	•	•	•
	•				•	•		•	•	•	• •	•	•	•
•	•		• •	•	•	•	•	•	• •	•	•	•	•	•
	•	•	•	•	•	•		•	•	•	• •	•	•	•
•		•			•	•		•		•		•	•	•
•	•		• •	•	•	•	•	•		•	•	•	•	• •
	•	•	•	•	•	•		•	•	•		•	•	•
	(c)	(i)	This table	e the ta	ble.		- 	1		_				angles.
		Nu	mber of e	equilate	ral tria	angles	2	3	4	5	6	7	8	
		Gr	eatest per	imeter	(cm)		4						10	
			You may	use th	e grid	below	to help y	ou.						
	•	•	•	•	•	•	•	•	•	•	• •	•	•	•
•			• •											• •
	•										• •	•		
														•
							•			•		•		
	•		•		•					•		•	•	•
•	•			•	•	•	•	•		•	•	•	•	• •
	•	•	•	•	•	•		•	•	•	• •	•	•	•
•		•										•		•

	(ii) Write down the greatest perimeter for a shape made of 20 equilateral triangles.	
	(iii) How many equilateral triangles make the shape when the greatest perimeter is 32 cm?	cm
	(d) Write down an expression, in terms of x , for the greatest perimeter for a shape material triangles.	
2	Squares of side 1 cm may be joined edge to edge, for example	
	but not like this.	
	(a) Find the greatest perimeter for a shape made of 6 squares.	
	You may use the grid opposite to help you.	cm

© UCLES 2011 0607/06/O/N/11

							3							
•	•	•	•	•	•	•	•	•	•	•	•	•	•	For
•	•	•	•	•	•	•	•	•	•	•	•	•	•	Examiner's Use
•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•		•	•	•	•	•	•	
•	•	•	•	•	•	•		•	•	•	•	•	•	
•	•	•	•	•	•	•		•	•	•	•	•	•	
•	•	•	•	•	•	•		•	•	•	•	•	•	
•	•	•	•	•	•	•	• •	•	•	•	•	•	•	
(b)	(i)	Comp	lete thi	s table.										
	Num	ber of	square	s	2	3	4	5	6	7	8	9	10	
	Grea	test pe	rimete	r (cm)	6			12					22	
	(ii)	Write	down	the grea	test per	imeter	for a sha	npe mad	e of 17	squares.	1	1		
	(iii)	How r	nany s	quares 1	nake th	e shap	e when th	he great	est perii		32 cm?		cr	
(c)		e dow square		express	sion, in	terms	s of x,	for the						

3 (a) This table shows the greatest perimeters for shapes made of regular hexagons of side 1 cm.Complete the table.

For Examiner's Use

Number of regular hexagons	2	3	4	5	6
Greatest perimeter (cm)					26

(b)	Write	down	an	expression,	in	terms	of	х,	for	the	greatest	perimeter	for	a	shape	made
	of x re	gular h	exa	gons.												

4	Find an e	xpression.	in terms	of x.	for the	greatest	perimeter	for a s	hape mad	le of	\hat{x} regul	ar octagons.

5	(a)	Write down an expression, in terms of x and y , for the greatest perimeter for a shape made
		of x regular polygons each with y sides.

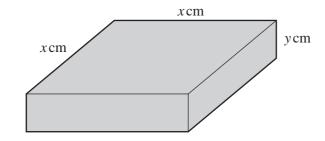
For Examiner's Use

 •	•••••	•••••	•••••

(b) The greatest perimeter for a shape made of *x* regular polygons, each with *y* sides is 26 cm. Find three possible pairs of values of *x* and *y*.

 $x = y = \dots$ $x = y = \dots$

x = _____ y = ____

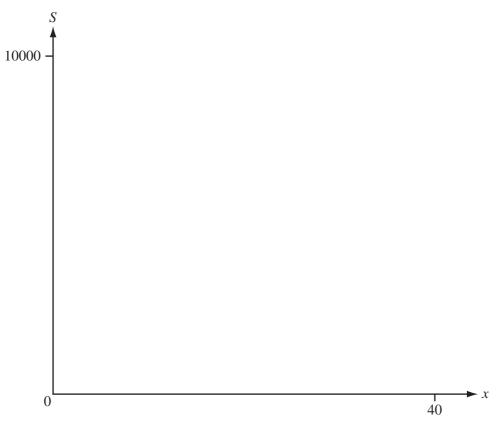

B MODELLING

COVERING CAKES (20 marks)

For Examiner's Use

Different shaped cakes are made each with a volume of 4000 cm³. The top and sides of each cake are covered in chocolate.

1 A square-based cake measures x cm by x cm by y cm, as shown in the diagram.



(a) Show that $y = \frac{4000}{x^2}$.

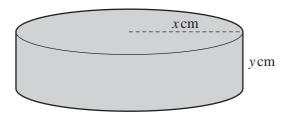
(b) The area covered in chocolate is $S \text{ cm}^2$. By finding an expression for S in terms of x and y show that $S = x^2 + \frac{16000}{x}$.

(c) Sketch the graph of S against x for $2 \le x \le 40$ and $0 \le S \le 10000$ on the axes below.

For Examiner's Use

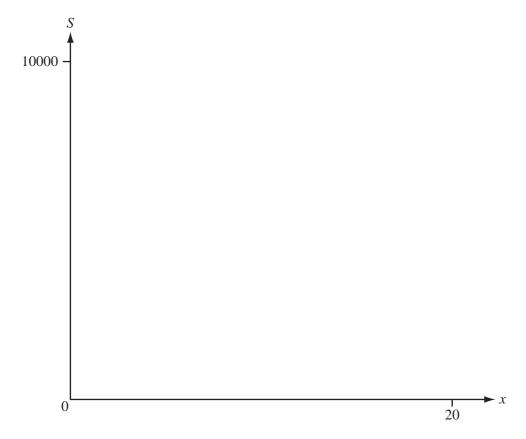
(d) Find the minimum surface area to be covered in chocolate.

Write down the values of x and y.


minimum surface area = _____ cm²

x =

y = _____


A circular-based (cylindrical) cake has a radius of x cm and a height of y cm. The area to be covered in chocolate is S cm² and the volume of the cake is 4000 cm³.

For Examiner's Use

(a) Show that $S = \pi x^2 + \frac{8000}{x}$.

(b) Sketch the graph of S against x for $1 \le x \le 20$ and $0 \le S \le 10000$ on the axes below.

	(c)	Find the minimum surface area to be covered in chocolate.
		Write down the values of x and y .
		minimum surface area = $\frac{1}{1}$ cm ²
		<i>x</i> =
		y =
3		$= x^2 + \frac{16000}{x}$ and $S = \pi x^2 + \frac{8000}{x}$ are models for the amount of chocolate required to cover top and sides of each cake.
	(a)	Explain how you could use these models for surface area to find the volume of chocolate required.
	(b)	Comment on whether the models give realistic results for the volume of chocolate.

Question 4 is printed on the next page

For Examiner's Use 4 For a cake with **minimum** surface area, bakers use the following rule:

For Examiner's Use

There is twice as much chocolate on the sides as on the top.

Test this rule on both cakes. Show your working.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.