UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/06

Paper 6 (Extended), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2012	0607	06

A INVES	A INVESTIGATION ADDITION TRIPLES					
1	(1, 2, 3) (1, 3, 4) (1, 4, 5) (2, 3, 5) (1, 5, 6) (2, 4, 6) (1, 6, 7) (2, 5, 7)	2	B1 for 6 or 7	First two nu	mbers can be	e swapped
2	(1, 2, 3) (1, 3, 4)		B1			
	(1, 2, 3) (1, 3, 4) (1, 4, 5) (2, 3, 5)		B1 cao			
	(1, 2, 3) (1, 3, 4) (1, 4, 5) (2, 3, 5) (1, 5, 6) (2, 4, 6)		B1 cao			
	(1, 2, 3) (1, 3, 4) (1, 4, 5) (2, 3, 5) (1, 5, 6) (2, 4, 6) (1, 6, 7) (2, 5, 7) (3, 4, 7) (1, 7, 8) (2, 6, 8) (3, 5, 8)	4	B1	setting: asce triple and fi	ation for systemation for systemating order returned to the repeating pre-	within each mbers in
3	5 6 7 8 9 10 11 4 6 9 12 16 20 25		3 14 15 6 42 49	2	B1 for 3	ft the numbers from their table unless wrongly counted.
4	3 5 7 9 11 13 15 1 4 9 16 25 36 49					No marks awarded here

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2012	0607	06

5	÷ 2, square OR square, ÷ 4	2	B1 square oe	Accept $\left(\frac{n-1}{2}\right)^2$ or $\frac{(n-1)^2}{4}$ only if
				written here in correct form For B1 accept n^2 on its own OR these are square numbers
				Correct operations only. Accept bad form.
	Testing both shown	1		Communication: any example written out correctly: $7-1=6$; $\frac{6}{2}=3$; $3^2=9$
				OR $\frac{7-1}{2} = 3$; $3^2 = 9$
				$OR\left(\frac{7-1}{2}\right)^2 = \left(\frac{6}{2}\right)^2 = 9$
				OR $\left(\frac{7-1}{2}\right)^2 = 3^2 = 9$
				OR $\frac{(7-1)^2}{4} = \frac{6^2}{4} = 9$
				OR $\frac{(7-1)^2}{4} = \frac{36}{4} = 9$

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2012	0607	06

	T	1		T
6 (a)	2500	2	M1 50 soi	Communication: $\frac{100}{2} = 50$
				or $\frac{101}{2} = 50.5$ and $50^2 = 2500$
				or $50 \times 50 = 2500$
				OR substitution in formula seen
(b)	215	2	M1 107 soi	Communication: $\sqrt{11449} = 107$ and $107 \times 2 = 214$
				OR Solving $0.25n^2 - 0.5n + 0.25$
				= 11449 by graph or the quadratic formula
				OR solving an expression = 11449
				using steps.
				OR $\sqrt{11449} \times 2 + 1$
(-)	$\left(\frac{n-1}{2}\right)^2$ oe	•		
(c)	$\left(\begin{array}{c} \overline{2} \end{array}\right)$	2		Other forms e.g. $0.25n^2 - 0.5n + 0.25$;
			SC1 $\frac{n-1^2}{2}$	$\left(\frac{n}{2}-\frac{1}{2}\right)^2$; $\frac{(n-1)^2}{4}$
			$ \begin{array}{c c} 2 \\ \text{or} & (n-1 \div 2)^2 \end{array} $	$\begin{pmatrix} 2 & 2 \end{pmatrix}$ 4 Allow use of x for n
			or $(n-1/2)^2$	Allow use of x for n
			or $\frac{n-1^2}{4}$	SC0 $n-1 \div 2^2$ (two errors in
			•	writing)
7 (a)	2450	1		Communication: their 6(a) – 50
				OR $49^2 + 49$ OR 50×49
(b)	74	1		Communication: $\sqrt{1332} = 36.5$ and $37^2 - 37$
				OR 37×36 OR $36^2 + 36$ OR 37×2
				OR Solving $0.25n^2 - 0.5n = 1332$ by graph or quadratic formula
(a)	$\left(\frac{n-2}{2}\right)^2 + \left(\frac{n-2}{2}\right) \text{ oe}$	2	SC1 ag in 6(a)	
(c)	$\begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$	<u> </u>	SC1 as in 6(c) (one bracketing	Other forms e.g: $0.25n^2 - 0.5n$ $\binom{n}{2}$ $\binom{n}{n}$ $\binom{n}{n}$
			error)	$\left(\frac{n}{2}\right)^2 - \left(\frac{n}{2}\right); \left(\frac{n}{2}\right)\left(\frac{n}{2}-1\right);$
				$\frac{n(n-2)}{4}$; $\frac{n^2}{4} - \frac{n}{2}$;
				$\left(\frac{n}{2}-1\right)^2+\left(\frac{n}{2}-1\right)$
	Communication	2	B2 for 2 B1 for 1	Communication seen in questions 2, 5, 6(a)(b), 7(a)(b)
	[Total: 23]			
	,			
	Scaled total 20			

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2012	0607	06

B MODE	B MODELLING REGIOMONTANUS' STATUE					
1 (a) (i) (ii) (b) (c)	$3^{2} + 2^{2} \text{ seen}$ $\frac{3}{\sqrt{13}} \text{ oe}$ $3^{2} + 1^{2} \text{ seen}$ $\sin A = \frac{3}{\sqrt{10}\sqrt{13}}$	1 1 1		Accept 4 + 9 Accept 0.832 or $\frac{3}{3.6}$ or better Substitution in the Sine Rule must be seen or implied Accept $\sin 56.3^{\circ} \times \frac{1}{\sqrt{10}}$ or $\frac{0.832}{\sqrt{10}} = 0.263 = \frac{3}{\sqrt{130}}$		
2	$\frac{1}{\sqrt{10}}$ oe isw	3	B1 $[AB] = \sqrt{5}$ soi B1 $[AC] = \sqrt{2}$ soi B1 $\frac{1}{\text{their } AB \times \text{their } AC}$	Accept 0.31 to 0.325. Accept $\frac{1}{3.16}$ Allow $\sqrt{5} = 2.2$ and $\sqrt{2} = 1.4$ Incorrect answers must be accurate to 2 decimal places Communication: Pythagoras and Sine Rule (even if arithmetical errors)		
3	$AB = \sqrt{x^{2} + 2^{2}}$ or $AB = \sqrt{x^{2} + 4}$ $AC = \sqrt{x^{2} + 1^{[2]}}$ $\sin A = \frac{\sin B}{b} = \frac{\frac{x}{\sqrt{x^{2} + 4}}}{\sqrt{x^{2} + 1}}$ or $\frac{x}{\sqrt{x^{2} + 4}} \frac{1}{\sqrt{x^{2} + 1}}$	3	M1 M1 M1 M1 dependent	Assume $AB = $ if clear from the diagram. Accept $AB^2 = x^2 + 4$ Assume $AC = $ if clear from the diagram. Accept $AC^2 = x^2 + 1$ Sine Rule must be seen or implied OR accept $\frac{x}{\sqrt{x^2 + 4}\sqrt{x^2 + 1}}$ if square roots used Question 1 and 2.		

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2012	0607	06

(b)	1.4 to 1.42 [m]	1	any single max lying on the left half of the grid G1 decreasing & concave upwards after max. Not touching axis.	Allow 2 mm distance to the origin along either axis
(c)	between 19° and 19.5°	2	M1 [sin A =] 0.33 or better	SC1 if 0.33 seen in part (a) or (b).
5 (a) (b) (i) (ii)		2	B1 correct numerator B1 correct denominator B1 for each SC1 30° and 1.7 to 1.75	Denominator must have the correct form. Communication: Pythagoras & Sine Rule ft if one of the following in part (a) $\frac{x}{\sqrt{(x^2+1)(x^2+(h+1)^2)}}$ 5° and 0.3 SC1 14.5° and 1.73 $\frac{xh}{\sqrt{(x^2+1)(x^2+h^2)}}$ no change and 1.73 SC1 19.5° and 3.5 $\frac{xh}{\sqrt{(x^2+1)(x^2+h^2+1)}}$ 18.7° and 0.08 or 0.09 SC1 38.1° and 1.5
	Communication	1		Seen in question 2 or 5(a)
	[T	otal: 20]		