

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CAMBRIDGE I	NTERNATIONAL MATHEMATICS		0607/06
CAMBRIDGE I Paper 6 (Exten	NTERNATIONAL MATHEMATICS ded)	r	0607/06 May/June 2010
CAMBRIDGE I Paper 6 (Exten	NTERNATIONAL MATHEMATICS ded)	1 1 hc	0607/06 May/June 2010 our 30 minutes
CAMBRIDGE I Paper 6 (Exten Candidates ans	NTERNATIONAL MATHEMATICS ded) swer on the Question Paper.	ו 1 hc	0607/06 May/June 2010 our 30 minutes

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

Do not use staples, paper clips, highlighters, glue or correction fluid.

You may use a pencil for any diagrams or graphs.

Answer both parts A and B.

You are advised to spend 45 minutes on Part A and 45 minutes on Part B.

You must show all relevant working to gain full marks for correct methods, including sketches.

In this paper you will also be assessed on your ability to provide full reasons and communicate your mathematics clearly and precisely.

At the end of the examination, fasten all your work securely together. The total number of the marks for this paper is 40.

This document consists of 7 printed pages and 1 blank page.

Answer **both** parts **A** and **B**.

A. INVESTIGATION FERMAT'S LITTLE THEOREM (20 marks)

You are advised to spend 45 minutes on part A.

The division $46 \div 5$ gives 9 with a remainder of 1. A method for finding the remainder is

 $46 \div 5 = 9.2$ Because $9 \times 5 = 45$, the remainder is 46 - 45 = 1.

The division $921 \div 7$ gives a remainder of 4. A method for finding the remainder is

 $921 \div 7 = 131.571...$ Because $131 \times 7 = 917$, the remainder is 921 - 917 = 4.

The division $2^{11} \div 13$ gives a remainder of 7. A method for finding the remainder is

 $2^{11} \div 13 = 157.5384...$ Because $157 \times 13 = 2041$, the remainder is $2^{11} - 2041 = 7$.

1 Find the remainder in these divisions.

(a) 1234 ÷ 7

(b) $2^9 \div 9$

For Examiner's Use

.....

2 In 1640 the French mathematician Fermat found something interesting about the remainder when dividing by a **prime** number. Some of his results are shown in the table below.

3

For Examiner's Use

Prime	Division	Remainder	Division	Remainder	Division	Remainder
3	$2^3 \div 3$					
5	$2^5 \div 5$		$3^5 \div 5$		$4^{5} \div 5$	
7	$2^7 \div 7$	2	$3^7 \div 7$		$4^7 \div 7$	
11	$2^{11} \div 11$					

Complete the unshaded boxes in this table. You may use the space below to show any working.

3 Use the patterns you have found in your table to complete the following statements.

	(a) $7^{11} \div$	has a rem	ainder of	
	(b) $8^{17} \div$	has a rem	ainder of	
4	From the table So	$2^7 \div 7$ $2^7 - 2$	has a remainder of 2. has a prime factor of 7.	
	Because	$2^{7} - 2 = 2(2)$ $2^{6} - 1$	$h^6 - 1$) and 7 is not a factor of 2, has a prime factor of 7.	
	(a) Complete the fo	llowing staten	nents to show why $5^{12} - 1$ has a prime factor of 13.	
			has a remainder of 5.	
	So	$5^{13} - 5$	has a prime factor of	
	Because	$5^{13} - 5 =$	and is not a factor of 5,	
		$5^{12} - 1$	has a prime factor of 13.	
	(b) Write down a p	prime factor of	8 ¹⁶ – 1.	

Part A continues on page 4.

5 Complete the general statement below.

 $a^{p-1}-1$ has a prime factor of .

This is known as Fermat's Little Theorem.

6 Fermat noted that *p* must not be a factor of *a*. Give an example to show the result is **not** true when *p* is a factor of *a*.

7 By writing $7^{24} - 1$ in different ways, you can use Fermat's Little Theorem to find prime factors.

Examples:

$$7^{24} - 1 = (7^{24})^{1} - 1 = (7^{24})^{2-1} - 1$$

Using Fermat's Little Theorem with $p = 2$, $7^{24} - 1$ has a prime factor of 2.

 $7^{24} - 1 = (7^8)^3 - 1 = (7^8)^{4-1} - 1$ Fermat's Little Theorem with p = 4 cannot be used because 4 is not a prime number.

Use the above method to find as many **prime** factors as you can of $7^{24} - 1$. Remember: *p* must not be a factor of *a*. Show all your working. For Examiner's Use

BLANK PAGE

5

For Examiner's Use

Part **B** starts on **page 6**.

B.	MODELLING	CHANGE OF AVERAGE SPEED (20 marks)	For
		You are advised to spend 45 minutes on part B .	Examiner's Use
San In S In S	n makes a journey in two st tage 1, he cycles at 10 km tage 2, he cycles at 20 km	tages. /h for one hour. /h.	
1	In Stage 2, Sam cycles for	r 30 minutes.	
	(a) Find the total distance	ce he travels.	
	(b) Show that his averag	km ge speed for the whole journey is 13.3 km/h.	
2	If, in Stage 2, he cycles fo	or 15 minutes, show that his average speed is now 12 km/h.	
3	If, in Stage 2, he cycles for	or 12 minutes, find his average speed.	
4	(a) In Stage 2, Sam cycl Write down a formul	km/h es for <i>x</i> minutes. la for <i>S</i> , the average speed, in km/h.	
	(b) Your formula is a ma Show that it simplified	athematical model for the average speed. es to $S = \frac{600 + 20x}{60 + x}.$	

5 Use the model to find Sam's average speed if, in Stage 2, he cycles for 13 minutes.

..... km/h

For Examiner's Use

6 On the axes below, sketch the graph of S against x for $0 \le x \le 500$. Show any important details on your sketch.

7 Find how many minutes Sam must cycle in Stage 2 to have an average speed of 13 km/h.

min

Part B continues on page 8.

- 8 In Stage 2, instead of 20 km/h, Sam cycles at y km/h for x minutes.
 - (a) Modify the model in question 4(b).
 - (b) Find y if, after 24 minutes in Stage 2, Sam's average speed is 8 km/h.

(c) On the axes below sketch the graph of S against x if he stops for x minutes at the end of Stage 1.

y =

.....

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

For Examiner's Use

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.