

## **Cambridge International Examinations**

Cambridge International General Certificate of Secondary Education

MATHEMATICS 0580/02

Paper 2 (Extended)
SPECIMEN MARK SCHEME

For Examination from 2015

1 hour 30 minutes

**MAXIMUM MARK: 70** 

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.



## Types of mark

**M** marks are given for a correct method.

A marks are given for an accurate answer following a correct method.

**B** marks are given for a correct statement or step.

**D** marks are given for a clear and appropriately accurate drawing.

**P** marks are given for accurate plotting of points.

E marks are given for correctly explaining or establishing a given result.

**SC** marks are given for special cases that are worthy of some credit.

## **Abbreviations**

cao correct answer only cso correct solution only

dep dependent

ft follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

www without wrong working art anything rounding to soi seen or implied

| Qu. | Answers                                       | Mark | Part Marks                                                                                                                                                                                             |
|-----|-----------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | 7.5(0) cao                                    | 2    | <b>M1</b> for $\frac{258.75}{4.6}$                                                                                                                                                                     |
| 2   | $3 \times 10^{27}$                            | 2    | <b>M1</b> for $6 \div (2 \times 10^{-27})$                                                                                                                                                             |
| 3   | cos38 sin38 sin158 cos158                     | 2    | M1 correct decimals seen 0.7(88) 0.6(15) 0.3(74) -0.9(271)                                                                                                                                             |
| 4   | $\frac{41}{333}$                              | 3    | <b>B2</b> for $\frac{123}{999}$ oe fraction or <b>M1</b> for $1000[x] = 123.123$ oe                                                                                                                    |
| 5   | (a) 7853 to 7855<br>or 7850 or 7860 www       | 2    | <b>M1</b> for $\pi \times 50^2$                                                                                                                                                                        |
|     | <b>(b)</b> 0.7853 to 0.7855 or 0.785 or 0.786 | 1ft  | Their (a) ÷ 10 000 evaluated                                                                                                                                                                           |
| 6   | 135 cao                                       | 3    | M1 for 720 or $(6-2) \times 180$ oe seen in working<br>and M1 for equation $180 + 4x =$ their 720<br>or<br>M1 for $(360 - 180) \div 4 (= 45)$ oe seen in<br>working<br>and M1 dep for $180 -$ their 45 |
| 7   | (a) $(y =) 80$                                | 1    |                                                                                                                                                                                                        |
|     | <b>(b)</b> $(z =) 40$                         | 1    |                                                                                                                                                                                                        |
|     | (c) $(t=) 10$                                 | 1ft  | Follow through $90$ – their $y$ or $50$ – their $z$                                                                                                                                                    |

| 8  | $y = -\frac{1}{2}x + 10$ oe                                                         | 3   | <b>M2</b> for $-\frac{1}{2}x + 10$                                                                                                                  |
|----|-------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|    | 2                                                                                   |     | or <b>M1</b> for gradient identified as $-\frac{1}{2}$                                                                                              |
|    |                                                                                     |     | or intercept as 10 (not on diagram)                                                                                                                 |
|    |                                                                                     |     | e.g. $y = mx + 10$ or $y = -\frac{1}{2}x + c$                                                                                                       |
| 9  | (a) Correct perpendicular bisector with                                             | 2   | B1 correct line                                                                                                                                     |
|    | arcs                                                                                | 2   | B1 correct construction arcs                                                                                                                        |
|    | <b>(b)</b> 60°                                                                      | 1   |                                                                                                                                                     |
| 10 | 0.38 or $\frac{19}{50}$                                                             | 4   | <b>B1</b> 0.8, 0.6 or 0.55 then<br><b>M1</b> 0.45 × their 0.6 <b>M1</b> 0.2 × their 0.55<br><b>or M2</b> 1 – (0.45 × 0.4 + 0.55 × their 0.8)        |
| 11 | (a) $\begin{pmatrix} 8 & 5 \\ 20 & 13 \end{pmatrix}$                                | 2   | <b>B1</b> two or three entries correct                                                                                                              |
|    | <b>(b)</b> $\begin{pmatrix} 1\frac{1}{2} & -\frac{1}{2} \\ -2 & 1 \end{pmatrix}$ oe | 2   | $\mathbf{B1} \frac{1}{2} \begin{pmatrix} a & c \\ b & d \end{pmatrix}  \mathbf{B1} \left( k \right) \begin{pmatrix} 3 & -1 \\ -4 & 2 \end{pmatrix}$ |
| 12 | (a) Negative                                                                        | 1   | Ignore embellishments                                                                                                                               |
|    | (b) Correct point                                                                   | 1   |                                                                                                                                                     |
|    | (c) (i) Accurate ruled line                                                         | 1   |                                                                                                                                                     |
|    | (ii) English mark                                                                   | 1ft | Follow through their (c)(i)                                                                                                                         |
| 13 | (a) $\frac{1}{2}$ <b>a</b> + $\frac{1}{2}$ <b>b</b> oe                              | 2   | M1 unsimplified or any correct route                                                                                                                |
|    |                                                                                     |     | e.g $\mathbf{a} + \frac{1}{2} (\mathbf{b} - \mathbf{a})$ or $\mathbf{OA} + \mathbf{AC}$                                                             |
|    | <b>(b)</b> $-1\frac{1}{2}\mathbf{a} + 1\frac{1}{2}\mathbf{b}$ oe                    | 2   | M1 unsimplified or any correct route                                                                                                                |
|    |                                                                                     |     | e.g. $\mathbf{CD} = 1\frac{1}{2}\mathbf{AB}$ or $\mathbf{b} - \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a})$                                    |
| 14 | (a) 2.84                                                                            | 2   | <b>M1</b> correct substitution of $g$ and $\ell$ seen                                                                                               |
|    | <b>(b)</b> $\frac{4\pi^2\ell}{T^2}$ oe                                              | 3   | M1 each correct move but third move marked on answer line                                                                                           |
| 15 | (a) 156                                                                             | 4   | M1 intention to find area under graph B2 completely correct area statement or B1 two areas found correctly (or one trapezium area)                  |
|    | <b>(b)</b> 12                                                                       | 1ft | Their (a)/13                                                                                                                                        |

| 16 | (a) 500, 405, 364–365, 295 ()                     | 2 | B2                                                                                                                |
|----|---------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------|
|    | (b) 5 points plotted within correct square        | 1 | P1 ft from table                                                                                                  |
|    | correct curve drawn within 1 mm of points plotted | 1 | C1                                                                                                                |
|    | (c) (i) 3.3–3.4                                   | 1 | <b>B1</b> ft from their curve or line reading at 350 g                                                            |
|    | (ii) Never oe                                     | 1 |                                                                                                                   |
| 17 | (a) $\frac{1}{2}$                                 | 2 | <b>B1</b> f(-2) seen                                                                                              |
|    | <b>(b)</b> $\sqrt[3]{(x-1)}$ or $\sqrt[3]{x-1}$   | 2 | <b>M1</b> $x - 1 = y^3$ or $\sqrt[3]{(y - 1)}$                                                                    |
|    | (c) 1 2                                           | 3 | M2 $(x-1)(x-2) = 0$<br>or M1 $(x+a)(x+b) = 0$ where<br>ab = 2 or $a+b=-3If 0 scored give M1 for x^2 - 3x + 2 = 0$ |
| 18 | (a) 4324 cao                                      | 2 | $\mathbf{M1} \frac{1}{6} \times 23 \times 24 \times 47$ or better                                                 |
|    | <b>(b) (i)</b> 4, 9                               | 2 | B1 either correct                                                                                                 |
|    | (ii) $(n+1)^2$ or $n^2 + 2n + 1$                  | 1 |                                                                                                                   |
|    | (c) $\frac{2}{3}n(n+1)(2n+1)$ oe                  | 2 | M1 recognising $V_n = 4T_n$                                                                                       |