MARK SCHEME for the October/November 2012 series

0580 MATHEMATICS

0580/21

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0580	21

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case

www without wrong working

Qu.	Answers	Mark	Part Marks
1	-16	2	M1 for 4 × 6.5
2	2 [0].852 or $\frac{23}{27}$		B1 for 85.56 or $\frac{2139}{25}$
3	(a) 3	1	
	(b) 4	1	
4	$\frac{\frac{17}{9}}{\frac{5}{2}} \text{ or } \frac{17}{9} \div \frac{5}{2}$	M1	$\frac{\frac{34}{18}}{\frac{45}{18}} \text{ or } \frac{34}{18} \div \frac{45}{18}$
	$\frac{17}{9} \times \frac{2}{5} = \frac{34}{45}$	M1	$\frac{34}{18} \times \frac{18}{45} = \frac{34}{45}$
5	$a^{(1)} - b^{(1)}$ www cao	2	M1 for $a^{\frac{1}{2}}a^{\frac{1}{2}} - a^{\frac{1}{2}}b^{\frac{1}{2}} + a^{\frac{1}{2}}b^{\frac{1}{2}} - b^{\frac{1}{2}}b^{\frac{1}{2}}$ oe
6	144	2	M1 for $ABC = 72$ or AOC reflex = 216 Angles must be fully stated or marked in correct place on diagram
7	16	2	M1 for 768 ÷ 48
8	543.19	3	M2 for 500×1.028^3 oe or long method or M1 for 500×1.028^n , $n = 2$ or 4
9	$x \leq 39$ www	3	M1 correct first move M1 correct 2nd move M1 correct move to answer line
10	70	3	B1 24.5 or 0.35 seen M1 their LB ÷ their UB
11	2.5	3	M1 $R = k/d^2$ A1 $k = 40$ or M1 $Rd^2 = k$ A1 $k = 40$
12	112 or 112.3 to 112.33	3	M2 for $\pi \times 6^2 - \pi \times 0.5^2$ or M1 for $\pi \times 6^2$ or $\pi \times 0.5^2$ seen

Pag	ge 3	Mark Scheme			Syllabus		Paper	
		IGCSE – October/Novem	ber 201	2	0580		21	
13	$ \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} $	cao	3	$\mathbf{M2} \text{ for } \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ or B1 for one matrix seen				
14	114.6 or	114.57(67027) to 114.59(1155)	3	M2 $2 \times \pi \times 4 \times x/$ M2 $x/360 = 8/2\pi4$ 360 = 8 or M1 $2 \times \pi \times 4 \times x/$ 360 8 seen				
15	180 ww	V	3	M1 $\frac{1}{2} \times 60 \times 14$ oe M1 their $420 - 4 \times 60$				
16	$\frac{4y+2}{y-1}$	0e	4	M1 $xy - 4y = x + 2$ M1 collecting terms in x on one side M1 factorising M1 dividing by coeff of x				
17	(a)	R	2	B1 for correct line, on each side of <i>AB</i> (longer than dash at <i>C</i>)B1 for 2 pairs of intersecting arcs				
	(b)		1	Intention to draw a full correct circle R shaded must be a closed region				
18	(a) $\frac{7}{25}$ (b) $\frac{7}{25}$ (c)	or $\frac{84}{300}$ oe	1					
	(b) (i)	62	1					
	(ii)	52	1					
	(iii)	19 to 20	1					
	(iv)	125	2	B1 for 175 seen				
19	(a) 17	$\begin{pmatrix} -32\\1 \end{pmatrix}$	2	M1 any 2 entries correct				
	(b) $\begin{bmatrix} 10\\4 \end{bmatrix}$	$\begin{pmatrix} -8\\6 \end{pmatrix}$	1					
	(c) 23 ca	0	1					
	$ \begin{array}{c} \textbf{(d)} \underline{1} \\ 23 \end{array} \left(\begin{array}{c} - \end{array} \right) $	$ \begin{bmatrix} 3 & 4 \\ 2 & 5 \end{bmatrix} $	2	M1 $\begin{pmatrix} 3\\ -2 \end{pmatrix}$	$ \begin{array}{c} 4 \\ 5 \end{array} \right) \text{or } \frac{1}{(\mathbf{c})} \left(\begin{array}{c} \end{array} \right) $	a l c d	$\begin{pmatrix} b \\ d \end{pmatrix}$ seen	

Pa	ge 4	Mark Scheme	Mark Scheme		Syllabus	Paper
	IGCSE – October/Novem		mber 201	2	0580	21
20	(a) 12		1			
	(b) $2x^3$ (c)	ao	2	M1 clear evidence of adding 1 then multiplying by 4 to $g(x)$		ng 1 then
	(c) $\sqrt[3]{2}$	$\overline{(x+1)}$ oe	3	M1 each correct move		
21	(a) trian	gle at (1, 1), (1, -1), (2, -1)	2	SC1 triangle at (-1, -1),(-1, 1), (-2, 1)		
	(b) triangle at $(-1, -1)(1, -1), (1, -2)$ 2ft correct or reflection of their trian $y = -x$		r triangle in			
	(c) refle	ction in the x axis	2	B1 reflection B1 x axis or $y = 0$		
			70			