

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER		CANDIDAT NUMBER	E		

COMBINED SCIENCE

0653/22

Paper 2 (Core)

October/November 2013

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

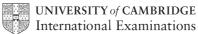
You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

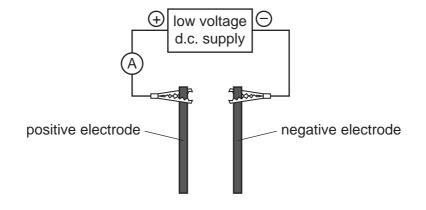
Answer all questions.

Electronic calculators may be used.


You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.


The number of marks is given in brackets [] at the end of each question or part question.

This document consists of **19** printed pages and **1** blank page.

1 (a) Fig. 1.1 shows apparatus that can be used to test the electrical conductivity of the materials contained in the beakers **Q**, **R** and **S**.

For Examiner's Use

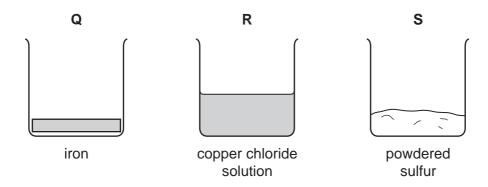


Fig. 1.1

(i) The contents of beakers **Q** and **S** are tested for electrical conductivity by lowering the electrodes into the beakers.

Predict and explain the results.

beaker Q	
prediction	
explanation	
beaker S	
prediction	
explanation	[3]

(ii) When the electrodes are lowered into the solution in beaker **R**, the following observations are made.

For Examiner's Use

- Bubbles of gas form on the surface of the positive electrode.
- A layer of an orange solid appears on the surface of the negative electrode.

Name the gas that forms and the substance in the orange layer.

orange layer ______[2]

(iii) State the name of the process described in (ii).

[1]

(b) Fig. 1.2 shows names and molecular structure diagrams of some compounds containing carbon.

Draw straight lines to match the structures with names. One line has been drawn as an example.

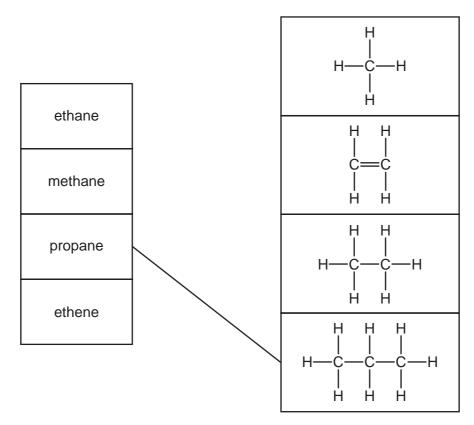


Fig. 1.2

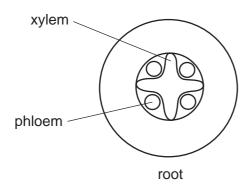
[2]

(c) Fig. 1.3 shows the structure of one molecule of a type of compound called a CFC (chlorofluorocarbon).

For Examiner's Use

Fig. 1.3

(i)	State the chemical formula of the molecule whose structure is shown in Fig. 1.3.				
	[1]				
(ii)	Explain whether or not the molecule in Fig. 1.3 is an example of a hydrocarbon.				
	[1]				


5 2 (a) Use the words or phrases below to complete the sentences. amplitudes frequencies speeds up slows down speed Each word or phrase can be used once, more than once, or not at all. (i) Light _____ when it travels from air to glass. (ii) In the electromagnetic spectrum, the waves are arranged in order of (iii) 20 Hz to 20 000 Hz is the approximate human range of audible (iv) The _____ of sound waves determines the loudness of the sounds. [4] **(b)** Fig. 2.1 shows a demonstration of sound transmission using a bell jar. to vacuum pump Fig. 2.1 As the air is removed from the bell jar, the ringing sound from inside the bell jar gets quieter. When all the air has been removed, the bell cannot be heard. Explain these observations.

For Examiner's Use

_____[3]

3 (a) Fig. 3.1 shows cross-sections of a root and a stem.

For Examiner's Use

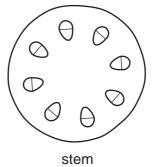


Fig. 3.1

- (i) On Fig. 3.1, use label lines to indicate the positions of the xylem and phloem on the diagram of the stem. [2]
- (ii) Describe the functions of xylem and phloem.

xylem	
phloem	
	•

[4]

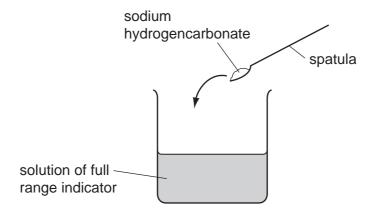
(b) The roots of most plants have root hairs near their tips.

For Examiner's Use

Researchers grew two types of plants, $\bf A$ and $\bf B$, in soil with different concentrations of phosphate ions. They measured the mean number of root hairs in a small area of the roots, and also the mean length of the root hairs.

Table 3.1 shows their results.

Table 3.1


type of plant	phosphate concentration	mean number of root hairs per unit area	mean length of root hairs/micrometres	
^	low	1.26	175	
A	high	1.70	149	
В	low	1.41	225	
Ь	high	1.85	52	

(1)	root hairs in type A plants.
	1
	2
	[2]
(ii)	Compare the effect of adding phosphate ions to the soil for type ${\bf A}$ plants and for type ${\bf B}$ plants.
	[2]
(iii)	Explain why a reduction in the length of its root hairs could reduce the rate of growth of a plant.
	[3]

Sodium hydrogencarbonate, NaHCO₃, is a white solid compound which is soluble in water.

For Examiner's Use

(a) A student adds some sodium hydrogencarbonate to a beaker which containes an aqueous solution of full range indicator (Universal Indicator).

When the sodium hydrogencarbonate dissolves, the solution changes colour from green to blue.

(i)	State and explain briefly how the pH of the mixture changes when the sodium hydrogencarbonate dissolves.
	[2]
(ii)	The student then adds excess dilute hydrochloric acid to the blue solution.
	Apart from an increase in volume, state two observations that are made when the acid is added.
	1
	2
	[2]

(b) Fig. 4.1 shows apparatus a teacher uses to demonstrate the heating of sodium hydrogencarbonate.

For Examiner's Use

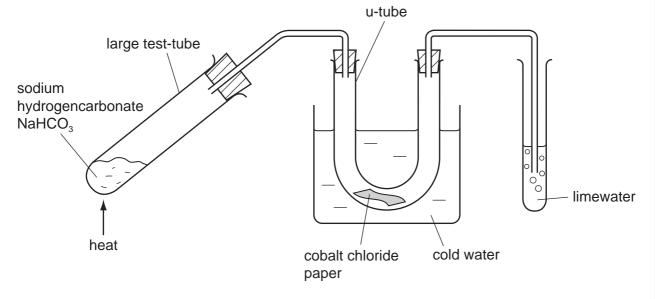
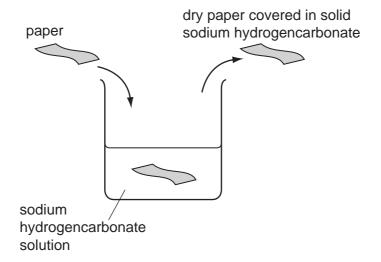


Fig. 4.1

The solid is heated strongly for a few minutes.

- The cobalt chloride paper changes colour from blue to pink.
- A gas bubbles out through the limewater, turning it cloudy.


After the reaction, a white solid, sodium carbonate, remains in the large test-tube.

(1)	produced	tne	observau	ons	Snow	เทลเ	DOIN	water	and	carbon	dioxide	are
		 										[2]

(ii) A student places a piece of paper into a solution of sodium hydrogencarbonate.

For Examiner's Use

She removes the paper and allows it to dry. She notices that crystals of solid sodium hydrogencarbonate are left on the paper.

The student found that it is now difficult to set fire to the paper.

Use the results of the experiment in Fig. 4.1 to suggest why the student fine difficult to get the paper to burn.	ds it
	[2]

5 (a) Fig. 5.1 shows a bicycle with two lights **A** and **B** at the front.

For Examiner's Use

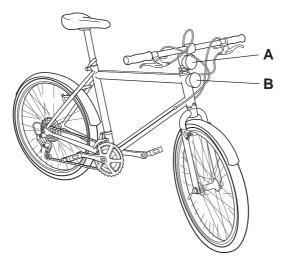


Fig. 5.1

Fig. 5.2 shows the circuit used to power the two lights.

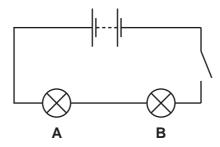


Fig. 5.2

(i) State the name given to this type of circuit arrangement.

[1]

(ii) To calculate the resistance of light **A**, the current flowing through it and the voltage across it must be measured.

On Fig. 5.2, using the correct symbols, draw an ammeter and a voltmeter correctly connected to make these measurements. [4]

	(iii)	The resistance of light ${\bf A}$ in the circuit is 5Ω and the resistance of light ${\bf B}$ is 10Ω .	For Examinaria
		Calculate the combined resistance of the two lights.	Examiner's Use
		State the formula that you use and show your working.	
		formula	
		working	
		Ω [2]	
(b)		e bicycle was made from a block of aluminium alloy of mass 9000 g and volume $0.0\mathrm{cm}^3$.	
	Cal	Iculate the density of aluminium in g/cm ³ .	
	Sta	te the formula that you use and show your working.	
		formula	
		working	
		working	
		g/cm ³ [2]	
(c)	The	e bicycle is ridden by a cyclist. The cyclist is cooled by sweating.	
	Exp	plain, in terms of particles, how sweating cools his body.	
		[1]	
			I

© UCLES 2013

6 Fig. 6.1 shows the male reproductive system.

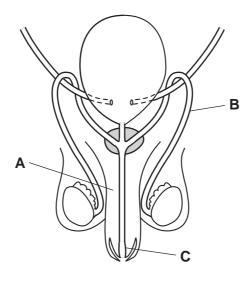
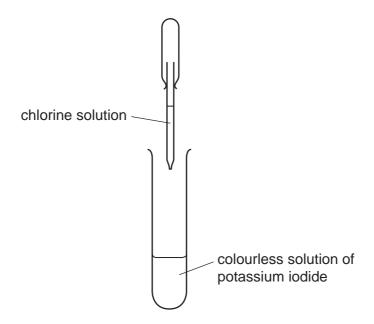


Fig. 6.1

(a)	Nar	me the parts labelled A , B and C .	
	Α.		
	В.		
	С.		[3]
(b)		infection may block the tube labelled B . If the tube on the other side is also block man may be unable to have children.	ed,
	Exp	plain why.	
			[2]
(c)	HIV	//AIDS is a disease that can be passed on by sexual intercourse.	
	(i)	What does HIV stand for?	
			[1]
	(ii)	State one way in which a man with HIV/AIDS can avoid passing it to anot person.	her
			[1]

7 (a) The elements chlorine, bromine and iodine are found in Group 7 of the Periodic Table.

For Examiner's Use


[1]

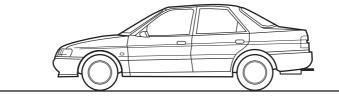
(i) Complete Table 7.1 by writing the physical state (solid, liquid or gas) at room temperature (20 °C) of the elements.

Table 7.1

element	physical state
bromine	
iodine	

(ii)	Explain why an iodine atom is larger and heavier than a bromine atom.	
	[2	 2]
iii)	An aqueous solution containing chlorine is added to a colourless solution optassium iodide.	of

Describe and explain briefly what is observed in this reaction.

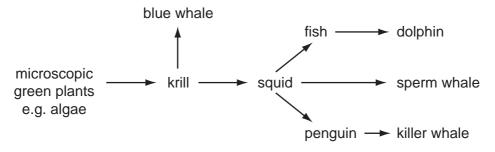

observation	
explanation	
	[2]

(b)	Explain why a dilute solution of chlorine is usually added to drinking water before it is supplied to homes.	For Examiner's Use
	[2]	
(c)	Helium is a gas found in Group 0 of the Periodic Table.	
	Some helium is added to a flask containing chlorine and left for a few days.	
	Predict and explain whether the flask now contains a mixture of the two elements or a compound.	
	[2]	

8 (a) Fig. 8.1 shows a car moving along a road.

For Examiner's Use

(i) Draw and label arrows on Fig. 8.1 to show the directions of the driving and friction forces acting on the car. [1]


	Fig. 8.1
(ii)	State one source of friction on the moving car.
	[1]
(iii)	The driving and friction forces are balanced.
	Explain what is meant by the phrase forces are balanced.
	[1]
(iv)	Describe the movement of the car when these forces are balanced.
(10)	bossibe the movement of the sail when these forces are balanced.
	[1]
(v)	Apart from the driving and friction forces there are other forces acting on the car.
	Name one of these forces.
	[1]
/I= \	The contravale a distance of 400 m days a bill in 05 accords
(b) (i)	The car travels a distance of 400 m down a hill in 25 seconds.
	Calculate the average speed of the car.
	State the formula that you use and show your working.
	formula
	working
	mm/s [2]

		[1]
(iii)	State the type of energy which the car will have lost as it travels down the hill.	
	State the type of energy which the car has gained.	[1]
(11)	The car is going faster at the bottom of the hill than it was at the top.	

For Examiner's Use

9 (a) Fig. 9.1 shows a food web in the Antarctic Ocean.

For Examiner's Use

		Fig. 9.1	
	(i)	State the term used for organisms such as the microscopic green plants that make their own organic nutrients.	е
			1]
	(ii)	Name one organic nutrient that is made by the green plants.	
		[1	1]
	(iii)	State what is shown by the arrows in the food web.	
		[1	1]
(b)	Fisl	hing boats catch large quantities of krill in the Antarctic Ocean.	
	Sug	ggest how this could affect the numbers of the organisms in the food web in Fig. 9.1	۱.
	•••••	[2	2]
(c)		ere is concern that global warming will damage the environment in the Antarcti	ic
	Nar	me two gases that contribute to global warming.	
	1.		
	2		2]

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	=							dnois			≡	≥	>	5	5	0
						Hydrogen										4 He lium
Be 4	9 Be Berylium										11 Boron 5	12 C Carbon 6	14 Nitrogen 7	16 O Oxygen 8	19 F Fluorine	20 Ne Neon 10
Mag	24 Mg Magnesium										27 A 1 Aluminium 13	28 Si Silicon	31 Phosphorus 15	32 S Sulfur 16	35.5 C1 Chlorine	40 Ar Argon
20 [©] C	45 45 45 Ca Sc Calcium Scandium 21	48 T Itanium	51 V Vanadium 23	52 Cr Chromium 24	Mn Manganese 25	56 Fe Iron	59 Co Cobalt	59 Ni Nickel 28	64 Cu Copper 29	65 Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium 32	75 AS Arsenic 33	See Selenium 34	80 Br Bromine 35	84 Kr Krypton 36
38 Str	Strontium 39 Yttrium	2 r Zironium 40	93 Nb Niobium 41	96 Mo Molybdenum 42	Tc Technetium 43	101 Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver	112 Cd Cadmium 48	115 n Indium	119 Sn Tin	122 Sb Antimony 51	Tellurium 52	127	131 Xe Xenon 54
. B. B.	137 139 Ba La Barium Lanthanum 57	178 Hf Hafnium * 72	181 Ta Tanalum	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 F Iridium	195 Pt Platinum 78	197 Au Gold	201 Hg Mercury 80	204 T 1 Thallium	207 Pb Lead 82	209 Bi Bismuth 83	Po Polonium 84	At Astatine 85	Rn Radon 86
88	226 227 Ra Radium Actinium 89	+														
anth Actir	*58-71 Lanthanoid series 190-103 Actinoid series]	140 Ce Cerium	Pr Praseodymium 59	Neodymium 60	Pm Promethium 61	Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	173 Yb Ytterbium 70	175 Lu Lutetium 71
a ×	a = relative atomic mass X = atomic symbol b = proton (atomic) number		232 Th Thorium	Pa Protactinium 91	238 U Uranium 92	Neptunium	Pu Plutonium 94	Am Americium 95	Cm Curium	Bk Berkelium 97	Cf Californium 98	ES Einsteinium 99	Fm Fermium 100	Mendelevium 101	No Nobelium 102	Lr Lawrencium 103

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).