

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CENTRE NUMBER CANDIDATE NUMBER	

COMBINED SCIENCE

0653/23

Paper 2 (Core)

October/November 2012

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use				
1				
2				
3				
4				
5				
6				
7				
8				
9				
Total				

This document consists of 20 printed pages.

Flowers are organs in which sexual reproduction takes place. For Examiner's Use

(a)	(i)	Complete the	definition of	f sexual re	production.	Use words	from the	list.
١	u ,	\·/	Complete the		i oonaai io	production.	OGC WOIGO	11 0111 1110	1100

	dissimilar	female	haploid	ide	ntical			
	ovary	y spern	n	zygote				
	Sexual reproduction is the process involving the fusion of							
		nuclei to fo	rm a diploic	d				
	and the production of g	enetically			offspring.	[3]		
(ii)	State the scientific term	for the fusion of	two nuclei.					
						[1]		

(b) Fig. 1.1 shows a section through a flower.

(i) Name the parts labelled A and B.

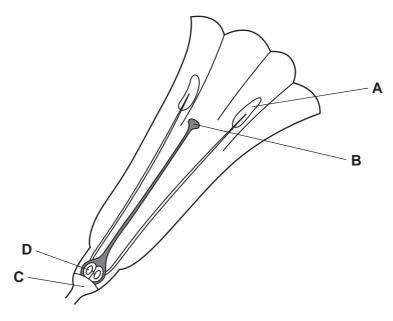


Fig. 1.1

	A	
	В	[2]
(ii)	State the letter of the part in which	

the male gametes are produced, a zygote is produced. [2]

1

(c) After pollination, seeds are produced. A student set up an experiment to investigate the conditions needed for the germination of lettuce seeds.

For Examiner's Use

He placed five lettuce seeds on cotton wool in each of five test-tubes. Fig. 1.2 shows the conditions present in each tube.

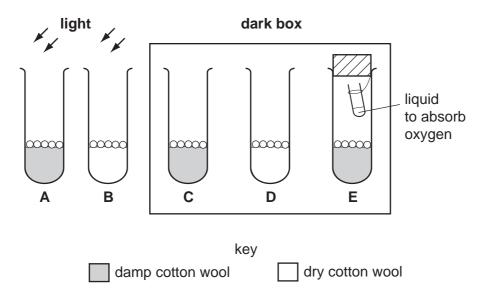
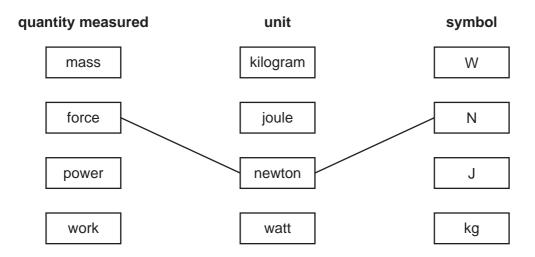


Fig. 1.2

Table 1.1 shows his results.

Table 1.1

tube	conditions			number of seeds that germinated
Α	water	oxygen	light	5
В	no water	oxygen	light	0
С				5
D				0
E				0


(')	have been done for you. [2]
(ii)	What conclusions can the student make from these results?
	[3]

2	(a)	(i)	State the percentages of nitrogen and oxygen in the air.
			nitrogen
			oxygen [2]
		(ii)	During a thunderstorm, energy from lightning causes nitrogen and oxygen to combine to form nitric oxide.
			Explain why nitrogen is an example of an <i>element</i> and nitric oxide is an example of a <i>compound</i> .
			[2]
	(iii)	Nitric oxide has the chemical formula, NO.
			Explain what is meant by this formula.
			[2]
(iv) What name is given to the type of chemical r bonds to another element?			What name is given to the type of chemical reaction that occurs when oxygen bonds to another element?
			[1]
			en magnesium burns in air, a white solid is formed. This white solid contains gnesium oxide, MgO.
		(i)	Name the type of chemical bonding in magnesium oxide.
			Explain your answer.
			type of chemical bonding
			explanation
			[2]

(ii)	A student burned some magnesium in air and then added the white solid formed to water.
	She tested the solution with Universal (full range) Indicator and found that the pH was 9.
	State a conclusion that the student can draw from this observation.
	[1]

3 (a) Draw lines to connect each quantity measured to its correct unit and symbol.

For Examiner's Use

[2]

(b) Fig. 3.1 shows two speed/time graphs for a car.

One has been done for you.

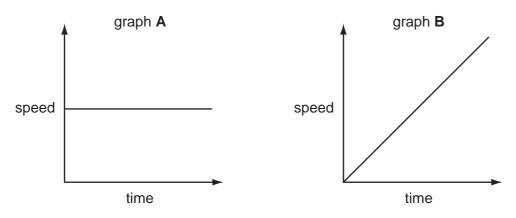


Fig. 3.1

Describe the motion of the car in

graph **A**,
graph **B**.

© UCLES 2012

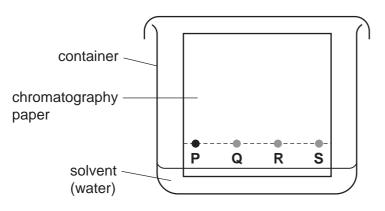
(c)	The	car travels at 20 m/s for 90 seconds.	
	Cal	culate the distance covered.	
	Sta	te the formula that you use and show your working.	
		formula used	
		working	
		working	
		m	[2]
(d)	One	e of the car's headlamps has a current of 2A, when the voltage across it is 12V.	
	(i)	Show that the resistance of the headlamp is 6Ω .	
		State the formula that you use and show your working.	
		formula used	
		working	
			[2]
((ii)	The car has two of these identical headlamps connected in series.	
		Calculate the total resistance of these two headlamps.	
		State the formula that you use and show your working.	
		formula used	
		working	
		Working	

Many b	oats are predators	that fly at nigh	t. They eat moths	s and other ins	sects.	
(a) Ur	(a) Underline the two words that describe the position of a bat in a food chain.					
c	arnivore	consumer	herbive	ore	producer	[1]
(b) Ba	ıts emit ultrasound	l.				
(i)	Ultrasound is so	und that has a	frequency too hi	gh for a huma	n to hear.	
	Suggest a frequ	ency for the ult	rasound emitted	by bats.	Hz	[1]
(ii)			orrectly describes			
	electroma	agnetic	longitudinal	transve	erse	[1]
(c) Ba	ıts use echo locati	on to detect ob	jects around the	n.		
Th	e reflected ultrasc	und waves are	detected by spe	cial cells in the	e bat's head.	
	g. 4.1 shows how nooth surface. The					m a
			~			<i>></i>
	1	ough surface			smooth surface	
			Fig. 4.1			
(i)	Use the informa	ition in Fig. 4.1	to describe wha	at happens to	the ultrasound w	aves
	a rough surface					
	a smooth surfac	e				
						[1]

4

	(ii)	Suggest how the bat can tell if it is flying over a rough surface or a smooth surface, even when it is completely dark.	
		[1]	
(d)	Maı	ny kinds of bat live in trees in forests.	
	List	three ways in which deforestation can damage the environment.	
	1 .		
	2 .		
	3	[3]	

5 (a) In many countries, river water is collected and treated to make it safe for humans to drink.


For Examiner's Use

State and explain which **two** of the processes shown below are used to treat river water so that it becomes safe to drink.

chlorination crystallisation filtration evaporation

first process
reason why this process is carried out
second process
Second process
reason why this process is carried out
[4]

(b) Fig. 5.1 shows chromatography being used by a student to investigate mixtures of dyes (coloured compounds) used to colour sweets.

key

- Q, R, S dyes extracted from three sweets
 - P mixture of common food dyes

Fig. 5.1

Fig. 5.2 shows the appearance of the chromatography paper after several minutes.

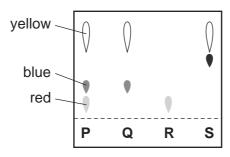


Fig. 5.2

(i)	Deduce and	d explain the colour of the sweet which contains only one dye.	
	colour		
	explanation		
		[2]
(ii)	State which the mixture	sweet contained a dye which was not one of the common food dyes P .	in
		[[1]

6 (a) Fig. 6.1 shows a washing machine.

For Examiner's Use

Fig. 6.1

Complete the sentence below using **two** of the words in the list.

		heat	kinetic	light	potential	sound	
	A w	ashing machin	e is designed to	o transform el	ectrical energy into		
			ene	rgy and		energy.	[2]
(b)	(i)	Some of the v	vater inside the	washing mac	hine evaporates.		
		Explain the pr	ocess of evapo	ration in terms	s of particles.		
							[2]
	(ii)	Explain why e	vaporation has				
							[1]

(c)	The casing of the washing machine is a solid. The water used in it is a liquid.
	Complete the diagrams below to show the arrangement of particles in a solid and in a liquid.
	solid
	[2]
(d)	Before buying a washing machine, a person may research several types to find out which washing machine has the greatest energy efficiency.
	Explain the meaning of the term <i>efficiency</i> .
	[1]

(a) Fig. 7.1 shows two human teeth. Α В Fig. 7.1 (i) Name the **two** types of teeth shown in Fig. 7.1. tooth A tooth B [2] (ii) Explain how tooth **B** helps to digest a food such as bread. [2] (b) For each part of the digestive system in the list below, tick (\checkmark) the correct function or functions. ingestion digestion absorption part mouth stomach small intestine [3]

7

Please turn over for Question 8.

Metallic copper is a very important material that has been extracted from copper 8 compounds for thousands of years. (a) (i) The wires used in many electrical devices are made from copper. State the two properties of metals such as copper, that make them suitable for making electrical wires. [2] 2 (ii) Copper wires are connected to the mains electrical supply using brass plugs. Brass is an alloy. copper wire brass plug Explain the meaning of the term alloy and state one difference in the physical properties of brass compared to copper. meaning of alloy difference in physical property [2] (iii) One of the processes used in the extraction of copper involves heating copper(I) sulfide in air. One of the reactions that occurs is between copper(I) sulfide and oxygen. This reaction also produces sulfur dioxide. Construct the **word** chemical equation for this reaction.

For Examiner's Use

_____[1]

(b) Copper may also be formed by the electrolysis of an aqueous solution of copper chloride using electrodes made of graphite (carbon).

For Examiner's Use

Fig. 8.1 shows a laboratory apparatus a student used to carry out this electrolysis reaction.

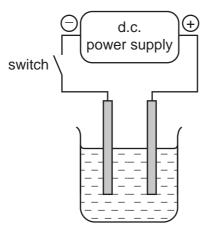


Fig. 8.1

(i)	What is the electrolyte in this electrolysis reaction?	
		[1]
(ii)	Name the product formed and describe what is observed at the surface of electrode when an electric current is passing through the circuit.	ach
	positive electrode	
	product	
	observation	
	negative electrode	
	product	
	observation	[4]

9 (a) Complete Table 9.1 to show the circuit symbol for each of the named components.

For Examiner's Use

Table 9.1

component	symbol
ammeter	
fuse	
variable resistor	

[3]

(b) Fig. 9.1 shows an electrical circuit for a torch (flashlight).

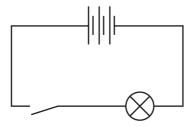


Fig. 9.1

(i) How many cells are fitted in the torch? [1]

(ii) A voltmeter is used to check the voltage across the light bulb.

Draw the symbol for the voltmeter in the correct position on the circuit. [1]

(c) A single ray of light from a torch is shone onto a mirror as shown in Fig. 9.2.

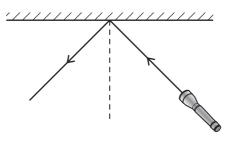


Fig. 9.2

- (i) On Fig. 9.2, label the angle of incidence and angle of reflection. [1]
- (ii) The angle of incidence = 45°.

Write down the value of the angle of reflection. [1]

DATA SHEET
The Periodic Table of the Elements

	0	4	Ĭ.	Hellum 2 Hellum	12 14 16 19	B C N O F	e 10	70	04 05.50 26 15 05.50 40	Silicon Phosphorus Sulfur Chlorine	14 15 16 17 18	08 62	Ga Ge As Se Br Kr	Gallum Germanium Arsenic Selenium Bromine Krypton 31 32 33 34 35 36 36	115 119 122 128 127 131	Sb Te	Indium Tin Antimony Tellurium lodine Xenon 49 50 51 52 53 54	204 207 209	Bi	Bismuth Polonium Astatine 83 84 85 86			007	165 167 169 173 X	JO Erbium Thulium Ytterbium	69 89 79		
													Cu Zu		108 112	Ag Cd	lver Cadmium 48	197 201	Au Hg	80			27	159	ιtbium	65		i
Group													ž	Nickel Cop 28 29	106	Pd	Palladium Silv 46 47	195 19	Pt A	Platinum Go 78 79				152	TC ropium	63 64		,
Gro												29	ပိ	Cobalt 27	103	Rh	Rhodium 45	192	_	Iridium 77			2	120	Samarium	62		1
		- :	I	Hydrogen 1								56	Fe	Iron 26	101	Ru	Ruthenium 44	190	Os	Osmium 76				2	Promethium	61		:
												22	Mn	Manganese 25		ည	Technetium 43	186	Re	Rhenium 75			7	144	Z	09	238	
												25	ပ်	Chromium 24	96	Mo	Molybdenum 42	184	≯	Tungsten 74			,	141	Praseodymium	59		
												51	>	Vanadium 23	93	qN	Niobium 41	181	Та	Tantalum 73				0 6	Cerium	58	232	i
												48	F	Titanium 22	91	Zr	Zirconium 40	178	Ξ	Hafnium 72							ic mass	
												45	သင	Scandium 21	68	>	Yttrium 39	139	La	Lanthanum 57 *	227	Actinium		series	eries		a = relative atomic mass	
	=				6	Be	Beryllium 4		* Z	Magnesium	12	40	င္မ	Calcium 20	88	Š	Strontium 38	137	Ba	Barium 56	226	Radium	88	*58-71 Lanthanoid series	190-103 Actinoid series		a a	
	_				7	=	Lithium 3	2	S 2	Sodium	1	39	¥	Potassium 19	85	Rb	Rubidium 37	133	Cs	Caesium 55	Ĺ	Francium	/8	*58-71 L	190-103,			

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).