

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Candidates and	swer on the Question Paper.	1 hour	15 minutes
Paper 2 (Core)		October/Nov	ember 2012
COMBINED SO	CIENCE		0653/22
CENTRE NUMBER		CANDIDATE NUMBER	
CANDIDATE NAME			

READ THESE INSTRUCTIONS FIRST

No Additional Materials are required.

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 22 printed pages and 2 blank pages.

1 Fig. 1.1 shows a red blood cell and a root hair cell.

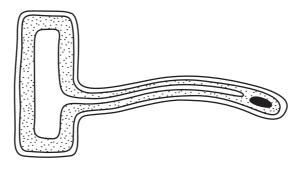


Fig 1.1

- (a) Tick (\checkmark) the boxes to show which structures are present in
 - a red blood cell,
 - a root hair cell.

	stı	ructure	red blood cell	root hair cell		
	ce	II membrane				
	nu	cleus				
	ch	loroplast			[2]	
(b)	(i)	Name the red prote	in found in the cytople	asm of the red blood o	ell.	
			•••		[1]	
	(ii)	State the function o	f a red blood cell.			
					[1]	
(c)	Nar	me the colourless ca	rbohydrate in the cell	wall of the root hair ce	. II.	
			***		[1]	

(d) Fig. 1.2 shows a plant with its roots in a beaker of water containing a blue dye.

For Examiner's Use

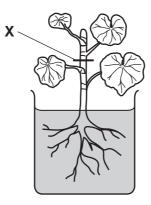


Fig. 1.2

After 10 minutes, the veins in the leaves of the plant became blue.

(1)	Explain why the veins in the leaves became blue.	
		••••
		[2]
·	A	

(ii) A student cut the stem of the plant at **X**. Fig. 1.3 shows the appearance of the cut stem seen through a microscope.

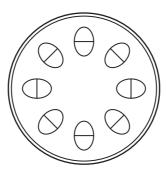


Fig. 1.3

On Fig. 1.3, use a pencil to shade the part that would look blue.

[1]

2	(a)		proton (atomic) num Group 7 of the Perio		e element fluori	ne is 9. Flu	orine is found in Period 2
		(i)	Predict the number of	of electrons	s in one atom o	of fluorine.	
			Explain your answer	·.			
			total number of elect	trons		••••	
			explanation				
							[2]
		(ii)	Predict and explain element would be ar		•		riodic Table, whether this
							[1]
	(b)	The	halogens are reactiv	ve element	s found in Grou	up 7 of the F	Periodic Table.
		ioni					rioup 1 to form colourless riods 2 to 4 are shown in
			Γ				
				Li		F	
				Na		C.1	

Fig. 2.1

Br

K

(i)	The alkali metals react with water to produce an alkaline solution and a gaseous element.
	State and explain briefly which one of the alkali metals shown in Fig. 2.1 reacts most vigorously with water.
	alkali metal
	explanation
	[2]
(ii)	Name the gas which is given off during the reaction in (i) and describe a test for this gas.
	name
	test
	[3]
(iii)	Describe how potassium and bromine atoms become strongly bonded together when they react to form potassium bromide.
	You may draw a diagram if it helps your answer.
	[3]

(c) A student adds a solution containing chlorine to a colourless solution of potassium bromide as shown in Fig. 2.2.

For Examiner's Use

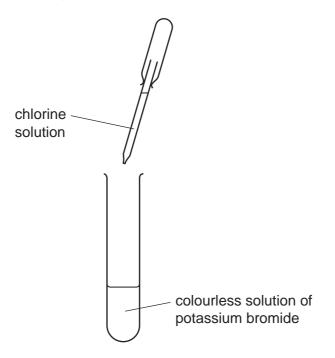


Fig. 2.2

Describe and explain briefly what is observed when chlorine and potassium bromide react.

observation	
explanation	
	[2]

3 Fig. 3.1 shows four swimmers at the start of a race.

For Examiner's Use

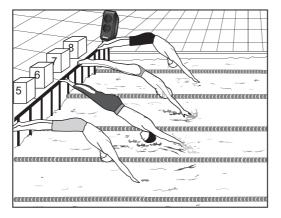


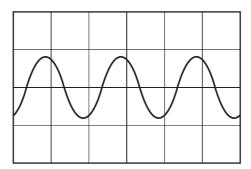
Fig. 3.1

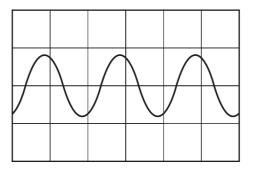
(a) State the form of energy which the swimmers lose as they fall from their starting positions into the water.

[1]

- **(b)** The swimmers start their race when they hear a loud, high-pitched sound from a loudspeaker.
 - (i) Fig. 3.2 shows the trace of a sound wave as it appears on an oscilloscope screen.

On Fig. 3.2 draw another trace of a sound wave from a sound that is louder than the one shown, but has the same pitch.




Fig. 3.2

[2]

(ii) Fig. 3.3 shows the trace of a sound wave as it appears on an oscilloscope screen.

For Examiner's Use

On Fig. 3.3 draw another trace of a sound wave from a sound that has a higher pitch than the one shown, but has the same loudness.

[2]

Fig. 3.3

(iii)	The swimmers can hear the sound from the loudspeaker only if the frequency of
	the sound lies within a range of frequencies which the human ear can detect.

State this range of frequencies.

Hz to	Hz	[1]

(c) Sound travels at 330 m/s in air. One swimmer is 0.4 m from the loudspeaker when he hears the sound.

Calculate the time taken for the sound to travel from the loudspeaker to the swimmer.

State the formula that you use and show your working.

formula used

working

____s [2]

Explain in terms of particles how this evaporation takes place.	(d)	When the swimmers have finished their race, they leave the pool. The water on their bodies evaporates.
		Explain in terms of particles how this evaporation takes place.

4 (a) Fig. 4.1 shows part of a food web in a forest ecosystem.

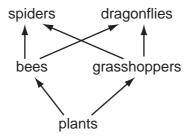


Fig. 4.1

(i)	Plants are the pro	oducers in this food w	veb.		
	Define the term p	producer.			
					[2]
(ii)	Name one organ	ism in the food web t	hat is a carnivore.		
					[1]
(iii)	What do the arro	ws in the food web re	epresent?		
					[1]
` '		that bees depend of ects to help them to	•	ering plants also de	pend
(i)	Complete the ser	ntences, using words	from the list.		
	anthers	asexual	diploid	haploid	
	ovary	petals	sexual	stigma	
	Flowers are organs in which reproduction takes place.				
	Pollen grains are made in the				
	During pollination, insects carry pollen grains from one flower to another. The				
	pollen grains are transferred to the [3]				

(ii)	After they have been pollinated, flowers produce seeds.	
	List two environmental conditions that all seeds need for germination.	
	1	
	2	[2]

5 Acid indigestion is caused by unusually high levels of stomach acid. This condition may be treated by taking an antacid tablet.

For Examiner's Use

One type of antacid tablet contains a mixture of sodium hydrogencarbonate, calcium carbonate and magnesium carbonate.

A student investigated the reaction between these antacid tablets and dilute hydrochloric acid.

Fig. 5.1 shows one of the experiments the student carried out.

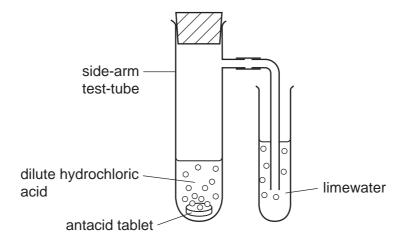


Fig. 5.1

A gas was given off when the antacid tablet reacted with the dilute hydrochloric acid. This gas reacted with the limewater.

(a)		scribe perime		explair	n the	change	in	appearanc	e of	the	limewater	during	the
(b)	The	e stud	ent u	sed exc	ess a	cid in th	e re	eaction sho	 wn in	Fig.	5.1, which	caused	[2]
						ssolve co that rem		-	on wh	en th	e reaction i	s finishe	d.
	1.												
	2.												[2]

6	(a)	The	applia	ances	shown	conv	ert e	lectric	cal e	nergy in	to o	ther f	orms	of e	nerg	y.			
			nplete ased.	the	senten	ces n	ext 1	o ea	ich c	liagram	to :	show	the	usef	ul fo	orm (of er	nergy	
		(i)								A fan c	conv							[1]	
						~										CITE	ıgy.	נין	
		(ii)						7		An iror	ı coı	overt	s ele	ctrica	l ene	erav i	into		
				_						Alliloi	1 001	IVCIL	3 CIC	Ctrica	CITC			F41	
																ene	rgy.	[1]	
		(iii)																	
				(\bigcirc			A torch			ght)	conve	erts	elect	rical		
																ene	rgy.	[1]	
	(b)				eral preo hen usi					cessary	to a	avoid	l gett	ing a	n ele	ectric	sho	ck or	
		(i)	State	one	precaut	ion th	at m	ust be	e tak	en wher	ı us	ing a	n ele	ctrica	ıl app	olian	ce.		
																		[1]	
		(ii)	For th	e pre	ecaution	desc	cribed	d in (i) , ex	plain wh	y it i	is imp	oorta	nt.					
																		[1]	

(c) Some torches (flashlights) use a filament lamp. Fig. 6.1 shows a circuit for measuring the current through a filament lamp as the potential difference is changed.

For Examiner's Use

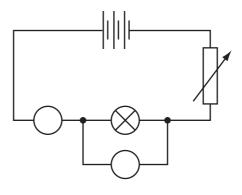


Fig. 6.1

Write the letters $\bf A$ and $\bf V$ in the two circles on the diagram. They should show the correct positions of the ammeter $\bf A$ and voltmeter $\bf V$. [1]

(d) Fig. 6.2 shows a graph of the results.

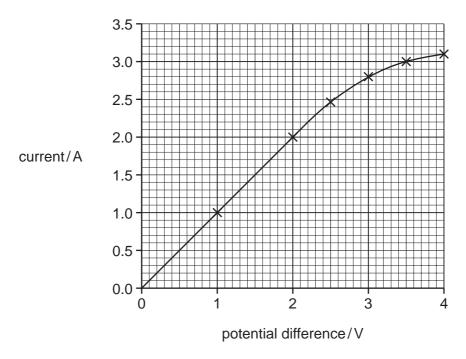


Fig. 6.2

(i) Use the graph to find the current when the potential difference is 1.5 V.Show your working on the graph.

	Α	[1]
--	---	-----

(ii)	Describe increases		through	the	filament	lamp	changes	as	the	voltage
										[1]

(e) A single ray of light from a torch is shone onto a mirror as shown in Fig. 6.3.

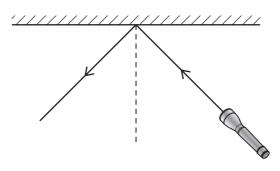


Fig. 6.3

- (i) On Fig. 6.3, label the angle of incidence and angle of reflection. [1]
- (ii) The angle of incidence = 45°.

Write down the value of the angle of reflection. [1]

7 (a) Fig. 7.1 shows the human alimentary canal.

For Examiner's Use

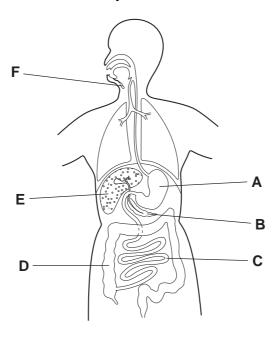


Fig. 7.1

	(1)	Name	
		part A ,	
		part D .	[2]
	(ii)	State the letter that indicates	
		the liver,	
		the area where digested food is absorbed.	[2]
(b)	Des	scribe how the molar teeth help in the digestion of food.	
			[2]

(c) Lipase is an enzyme that catalyses the breakdown of fats to fatty acids and glycerol.

A student carried out an experiment to investigate the effect of temperature on the rate of the breakdown of fats by lipase. Fig. 7.2 shows how she set up two test-tubes.

For Examiner's Use

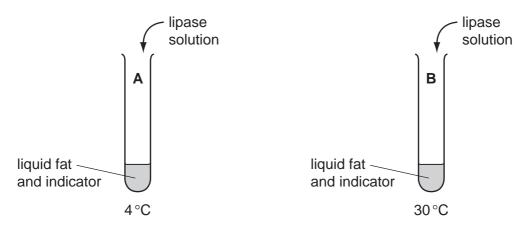
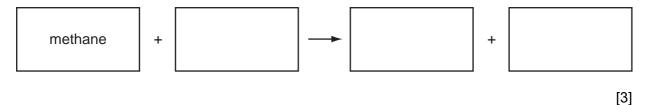


Fig. 7.2

The indicator that the student used changes colour from blue to yellow when the pH falls below 5.

Table 7.1 shows her results.

Table 7.1

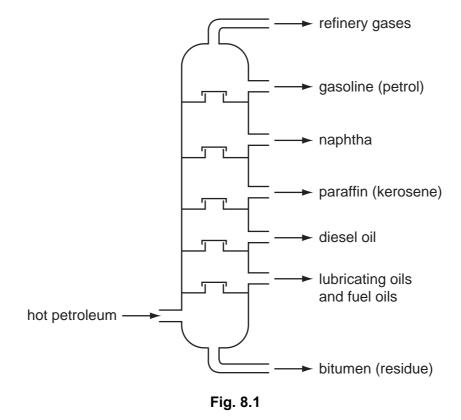

time/minutes	tube A (4°C)	tube B (30°C)	
0	blue	blue	
5	blue	yellow	
10	blue	yellow	
15	yellow	yellow	

(i)	Explain why the indicator eventually changed to yellow in both tubes.	
		[1]
(ii)	Explain the reason for the difference between the results for tube A and tube B .	
		[2]

8 Large amounts of chemical energy are stored in the world's reserves of fossil fuels such as natural gas and petroleum (crude oil).

For Examiner's Use

- (a) Methane is found in natural gas.
 - (i) Complete the **word** chemical equation for the complete combustion of methane.



(ii) State the term used to describe chemical reactions that release heat.

[1]

(b) Petroleum is a mixture of a very large number of compounds.

Fig. 8.1 shows a diagram of the industrial process used to separate petroleum into mixtures that are more useful.

(i) State the full name of the process shown in Fig. 8.1.

[1]

(ii)	The list below sh	lows the che	emical formulae	of five com	pounds.	
	CaCO ₃	C_5H_{12}	$C_6H_{12}O_6$	C_2H_6	C_2H_6O	
	State and explai petroleum.	n which of t	hese formulae	represent c	compounds th	at are found in
	formulae					
	explanation					[2]
(iii)	State one use of	refinery gas	S.			
						[1]
(iv)	Refinery gas cor	ntains the co	mpound ethane) .		
	Complete the dia started below.	agram of the	e structure of o	ne molecul	e of ethane w	/hich has been
	1	H—C—				
						[2]

9 Fig. 9.1 shows a toy car of mass 0.5 kg travelling over a plastic surface.

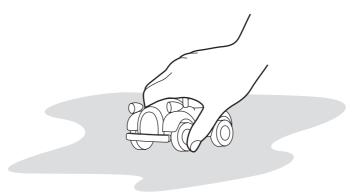


Fig. 9.1

(a)	While the car is moving the wheels are rubbing against the plastic surface. The becomes electrostatically charged with a positive charge.	car
	Explain how this happens.	
		[3]

(b) A speed – time graph for the car is shown in Fig. 9.2. It shows the motion of the car over a 25 second period.

For Examiner's Use

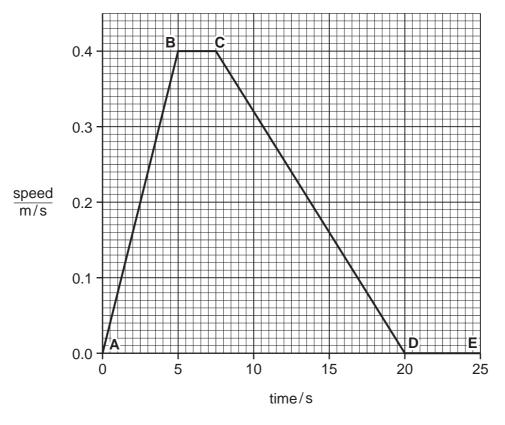


Fig. 9.2

(i) Use the graph to find one time when the car is not moving. Write down this	time.
--	-------

[1	ĺ
 -	

(ii) Determine **one** part of the graph when the car was travelling at constant speed and write down the value of this speed.

part of graph	
speed	[2]

BLANK PAGE

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

Group	0	4 He Helium	20 Neon 10 A	Argon	8 7	Krypton 36	131	Xe	Xenon 54		Ru	Radon 86		Lu Lu	71	-	Lawrencium	103
	IIΛ		19 Fluorine		∞ ਯ	Bromine 35	127	_	lodine 53		¥	Astatine 85		173 Yb		4		102
	I		c	Sulfur 16	Se 39	Selenium 34	128	<u>e</u>	Tellurium 52			Polonium 84		169 Tm		7		101
	>		14 Nitrogen 7	Phosphorus	75 As	Arsenic 33	122	Sb	Antimony 51	209	Ξ	Bismuth 83		167 Er	89	j		100
	ΛΙ		12 Carbon 6	Silicon	де 9	Germanium 32		Sn		207	Pb	Lead 82		165 H	67	Ĺ		66
	III		11 Boron 5	Aluminium 13	og Ga	Gallium 31	115	_	Indium 49	204	<i>1</i> L	Thallium 81		162 Dy	66	č	Californium	98
					65 Zn	Zinc 30	112	ဦ	Cadmium 48	201	БĤ	Mercury 80		159 Tb	65	Ġ	Berkelium	26
					64 Cu	Copper 29	108	Ag		197	Αn	Gold 79		157 Gd	64	Ç	Surium Curium	
				_	2 E	Nickel 28	106	Pd	Palladium 46	195	Ŧ	Platinum 78		152 Eu	63	1	Americium	95
					ී දි	Cobalt 27	103	R	Rhodium 45	192	_	Iridium 77		Samarium	62	ä	Plutonium	94
		T Hydrogen			56 Fe	Iron 26	101	Ru	Ruthenium 44	190	Os	Osmium 76			61		Neptunium	93
					Mn Mn	Manganese 25		ည	Technetium 43	186	Re	Rhenium 75		Nacdomina	90	238	Uranium	92
				_	జ రే	Chromium 24	96	٩	Molybdenum 42	184	>	Tungsten 74		Prasandumium	59		Protactinium	91
					5 >	Vanadium 23	63	g R	Niobium 41	181	Та	Tantalum 73		140 Ce	28	232	Thorium	06
					88 	Titanium 22	91	Zr	Zirconium 40	178	Ξ	Hafnium 72				mic mass		nic) number
		_			S C 45	Scandium 21	88	>	Yttrium 39	139	La	Lanthanum 57 *	AC Actinium t	d series series		a = relative atomic mass	A = atofflic symbol	b = proton (atomic) number
	=		Beryllium 4	Magnesium 12	⁶ В	Calcium 20	88	Š	Strontium 38	137	Ва	Barium 56	226 Rad ium Radium	*58-71 Lanthanoid series 190-103 Actinoid series			<	
	_		7 Lithium 3	Sodium Sodium	® ⊀	Potassium 19	85	Rb	Rubidium 37	133	S	Caesium 55	Fr Francium 87				vey	٩

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).