

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME							
CENTRE NUMBER				CANDIDA NUMBER			

COMBINED SCIENCE

0653/22

Paper 2 (Core)

October/November 2010

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	

This document consists of 21 printed pages and 3 blank pages.

BLANK PAGE

1 (a) Polar bears live in the cold, arctic region. They have thick, white fur.

	Des	scribe how fur keeps a polar bear warm.	
			•••
			2]
(b)	(i)	Above the arctic region the ozone layer is decreasing, allowing more ultraviole radiation, which can cause chemical changes, to reach the surface of the Earth.	et
		State one danger to human beings of being exposed to large quantities ultraviolet radiation.	of
			1]
	(ii)	Ultraviolet radiation is part of the electromagnetic spectrum.	
		Name one other radiation which is part of the electromagnetic spectrum and state a use of this radiation.	te
		name	
		use [2]

2 (a) The apparatus shown in Fig. 2.1 can be used to react lead oxide and carbon.

For Examiner's Use

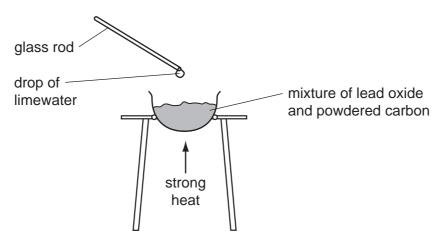
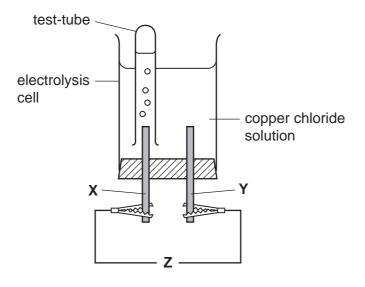



Fig. 2.1

When the mixture is heated, molten metal is formed in the container and the drop of lime water on the end of the glass rod becomes cloudy.

(i)	Suggest the word equation for the reaction between lead oxide and carbon. not write a symbolic equation.	Do
		[2]
(ii)	State one substance, shown in your equation in (i), which is a compound.	
	Explain why this substance is described as a compound and not as an element.	1
	substance	
	explanation	
		[3]

(b) Fig. 2.2 shows some of the apparatus used in the electrolysis of copper chloride solution.

	Fig. 2.2
(i)	What is missing from position Z in Fig. 2.2?
	[1]
(ii)	Name the gas which collects in the test-tube, and explain whether electrode ${\bf X}$ is the anode or the cathode.
	gas
	Electrode X is thebecause
	[2]

3 A healthy plant growing in a pot was watered and placed in a sunny window. A transparent plastic bag was placed over the plant, as shown in Fig. 3.1.

For Examiner's Use

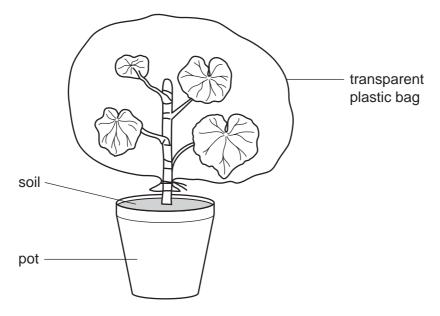


Fig. 3.1

- (a) The temperature near the window fell overnight. The next morning, small droplets of liquid water were visible on the inside of the plastic bag.
 - (i) Name the process by which plant leaves lose water vapour.

[1	1]	١
 -	-	•

(ii) Name the small holes in the leaf through which the water vapour is lost.

Γ	1	1
 L	٠.	J

(iii) Explain why the water formed droplets of liquid on the plastic bag.

© UCLES 2010 0653/22/O/N/10

(b) Fig. 3.2 shows a cell from the plant leaf.

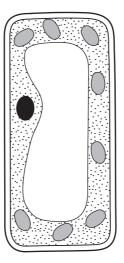


Fig. 3.2

- (i) On the diagram of the cell in Fig. 3.2, label and name **two** structures that would **not** be present in an animal cell. [2]
- (ii) Name the part of the leaf in which this cell could be found.

L '.

(iii) The cell in Fig. 3.2 can photosynthesise.

Write the word equation for photosynthesis.

[2]

4 (a) Fig. 4.1 shows the speed-time graph for a train.

For Examiner's Use

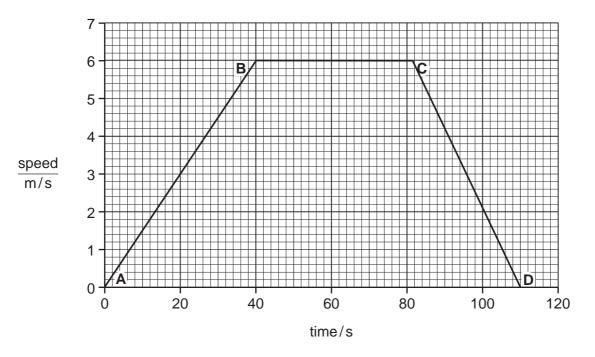


Fig. 4.1

The brakes are applied at **C**. Calculate how long it takes the train to stop.

- (b) Another train, on a journey lasting 10 minutes, travelled at a constant speed of $9\,m/s$.
 - (i) Show that the distance travelled by the train during this journey was 5400 m.
 State the formula that you use and show your working.

formula used

working

(ii)	The average force needed for the train to maintain the speed of 9 m/s was 10 000 N	l.
	Calculate the work done by the train over 10 minutes.	
	State the formula that you use and show your working.	
	formula used	
	working	
	J	2]

5 Fig. 5.1 shows some stages in the formation of a human fetus.

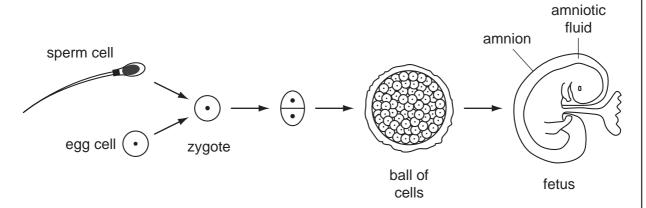


Fig. 5.1

(a)		st human cells contain 46 chromosomes, but egg cells and sperm cells contain chromosomes each.	only
	Sug	igest a reason for this.	
			[1]
(b)	Nam	ne the part of the reproductive system in which each of these events takes plac	e.
	(i)	Eggs are produced.	[1]
	(ii)	Fertilisation.	[1]
(c)	Desc	scribe the function of the amnion.	
			[2]

(d)	The fetus develops in the uterus.	
	It is attached to the uterus by the umbilical cord and placenta.	
	It obtains nutrients from its mother's blood, through the placenta.	
	Suggest why a pregnant woman should have more iron and calcium in her diet the when she is not pregnant.	an
	iron	
	calcium	
		[3]

			[1]
		with wet hands rather than dry hands.	
		Explain why you are quite likely to be electrocuted if you handle an electrical de	vice
6	(a)	Electrical equipment can be dangerous, especially when it is handled with wet hand	S.

For Examiner's Use

(b) Fig. 6.1 shows a simple electric circuit.

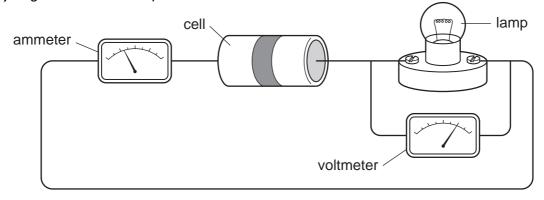


Fig. 6.1

Draw the circuit diagram for the circuit in Fig. 6.1 using the correct symbols.

[3]

(c) Fig. 6.2 shows a circuit built by a student.

For Examiner's Use

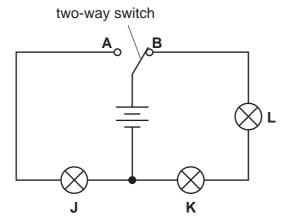


Fig. 6.2

(i) The switch is at position **B**.

Which lamps will be lit? [1]

(ii) The switch is then moved to position A.

What happens to lamps J, K and L?

lamp J

lamp **K**

lamp **L** ______

(d) The student has six resistors as shown in Fig. 6.3.

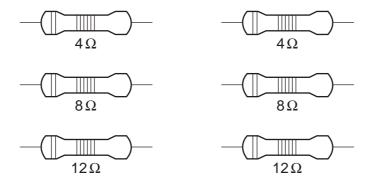


Fig. 6.3

Describe how he can combine **two** of these resistors to get a total resistance of 20 ohms.

.....

[1

(e) Power stations produce electricity.

For Examiner's Use

Six stages in the production of electricity at a coal-fired power station are shown below.

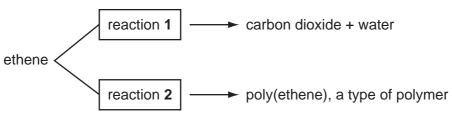
- A electricity produced
- **B** coal burned
- C steam produced
- **D** turbine driven by steam
- **E** turbine turns generator
- F water boils

Using the letters ${\bf A}$ to ${\bf F}$, list the stages in the correct order in the boxes below. Two have been done for you.

[2]

BLANK PAGE

Please turn over for Question 7.


7		e chemical s cleon (mass	symbols for the ato) numbers.	ms shown below i	nclude proton (ato	mic) numbers and		
			$^{16}_{8}O^{31}_{15}$	P 32 S 70 (Ga			
	(i)	State which the Period	ch of these symbol lic Table	s represent atoms	s of elements in th	e same group of		
						[1]		
	(ii)	Complete	Table 7.1 which n two of the atoms	shows the names				
				Table 7.1				
			element name	protons	neutrons			
			oxygen					
				15	16			
						[2]		
	(b) Chlorine and hydrogen combine to form hydrogen chloride which dissolves in water to produce hydrochloric acid.							
	(i)	Suggest a chloride.	substance which	reacts with hydro	chloric acid to forr	n the salt, copper		
						[1]		
	(ii)		n element from the chloric acid to proc			hich reacts safely		

© UCLES 2010 0653/22/O/N/10

(c) Ethene is a gaseous compound of carbon and hydrogen.

For Examiner's Use

Fig. 7.2 shows two different chemical reactions, **1** and **2**, involving ethene.

	Fig. 7.2	
(i)	For reactions 1 and 2, deduce the type of chemical reaction which occurs.	
	reaction 1	
	reaction 2	[2]
(ii)	For reaction 2 , describe briefly what happens to the molecules of ethene during t reaction.	he
		 [1]

8 Soya beans are an important crop in many tropical and subtropical countries, because they contain a lot of protein.

For Examiner's Use

(a) Fig. 8.1 shows how the yield of soya beans is affected by the pH of the soil in which they are grown.

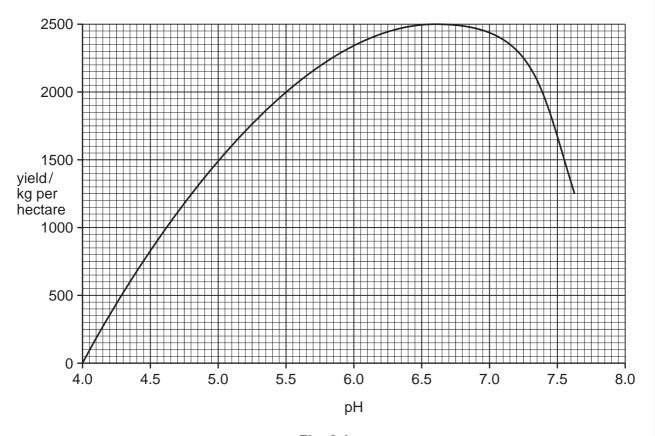


Fig. 8.1

A farmer grows soya beans in a field where the soil has a pH of 5.5.

(i)	What v	vield of	beans	could h	e aet	from	his	crop?
\ I <i>I</i>	vviiai	vicia oi	Deans	COUIG II	C GCL	110111	1113	\cup

kg per nectare	ַני.
va haana araw haat	

(ii) State the pH range in which soya beans grow best.

between	and	[1]	ı
		 	•

(iii) The farmer decides to add calcium carbonate to the soil in his field.

Explain why this would help him to achieve a higher yield of soya beans.

(b)	The	e field is on a steep slope.
	Des	scribe two things the farmer could do to reduce the risk of soil erosion.
	1	
	2	
		[2]
(c)		ya beans are seeds. They grow after the flowers on the soya plants have been inated.
	(i)	Soya flowers often have violet-coloured petals.
		Suggest how soya flowers are pollinated.
		[1]
	(ii)	Explain why soya beans only grow after the flowers have been pollinated.
	(11)	Explain why soya beans only grow after the howers have been pollinated.
		[2]
((iii)	Describe how you would test a soya bean seed for protein. State the result you would expect.
		test
		result [2]

9 (a) Complete Table 9.1 to show the properties of alpha, beta and gamma radiations.

For Examiner's Use

Table 9.1

	description	charge	range in air	ionising ability
alpha		positive	5 cm	very strong
beta	electron		50 cm	
gamma	wave		many kilometres	weak

[4]

(b))	Many	peopl	e h	ave	smo	ke c	detec	ctors	in	their	house	S.
-----	---	------	-------	-----	-----	-----	------	-------	-------	----	-------	-------	----

Smoke detectors contain a radioactive source which emits alpha radiation.

why the the house	iation fro	m the s	smoke	detector	is not	dangerou	is to	people
								[1]

10 In many countries, river water is collected and treated to make it safe for humans to drink.

For
Examiner's
Use

(a) State and explain which **two** of the processes shown below are used to treat river water so that it becomes safe to drink.

	a	dding chlorine	chromatography	evaporation	filtration
	exp	lanation			
	exp	lanation			
					[4]
b)		fur dioxide is a gase taining sulfur compou	ous compound which is i unds are burned.	eleased into the air	when fossil fuels
	(i)	Describe how sulfur	dioxide gas could cause	pollution of water in	rivers and lakes.
					[3]
	(ii)	Suggest one way in reduced.	which sulfur dioxide emi	ssions into the atmo	sphere are being
					[1]

(c) Fig. 10.1 shows a diagram of a water molecule, H₂O.

For Examiner's Use

Choose words or phrases from the following list to complete the labelling of the diagram.

covalent bond	hydrogen atom	ionic bond
nucleus	oxygen atom	proton

Fig. 10.1

[3]

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	4 He ilum	20 Neon 10 Neon 40 Ar Argon 18	84 Kr 84	131 Xe Xenon 54	Rn Radon 86		175 Lu m Lutetium 71	۲
	₹		19 Fluorine 9 35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine	At Astatine 85		173 Yb Ytterbium 70	S S
	>		16 Oxygen 8 32 Sulfur 16	79 Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium	Md
	>		14 Nitrogen 7 31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	FB
	≥		Carbon 6 Carbon 8 Silicon 14	73 Ge Germanium 32	119 Sn ™ 11n	207 Pb Lead 82		165 Ho Holmium 67	Es
	=		11 Boron 5 27 All Auminium	70 Ga Gallium 31	115 In Indium	204 T t Thallium 81		162 Dy Dysprosium 66	ర
				65 Znc Zinc 30	Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	¥
				64 Copper Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	CB
Group				59 N ickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am
Ģ				59 Cobalt 27	103 Rh Rhodium 45	192 I r Iridium 77		Sm Samarium 62	Pu
		1 Hydrogen		56 Fe Iron 26	Ru Ruthenium	190 Os Osmium 76		Pm Promethium 61	S O
				Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		144 Nd Neodymium 60	238
				52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59	Pa
				51 Vanadium 23	93 Niobium 41	181 Ta Tantalum 73		140 Ce Cerium	²³²
				48 Ti Titanium 22	2 Zroonium	178 Hf Hafnium 72			nic mass bol
				Scandium 21	89 Y Yttrium 39	139 La Lanthanum 57 *	227 Ac Actinium 89	d series series	a = relative atomic massX = atomic symbol
	=		Berylium 4 24 Mg Magnesium 12	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Rad Radium 88	*58-71 Lanthanoid series	e ×
	_		7 Lithium 3 23 Na Sodium 11	39 K Potassium	85 Rb Rubidium 37	133 Cs Caesium 55	Fr Francium 87	*58-71 L	Key

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).